Как заработать свои первые деньги?

Слушайте больше на Подкасте Михалыча для молодежи

В сравнении с этим странно звучащим утверждением сложности в установлении детального соответствия между способами колебаний струн и известными семействами частиц кажутся второстепенной проблемой. Теория суперструн требует существования шести измерений пространства, которых никто никогда не видел. Это не деликатный вопрос - это проблема.

Или они есть?

Теоретические открытия, сделанные в течение первых десятилетий двадцатого века, задолго до выхода теории струн на сцену, намекали, что дополнительные измерения совсем не обязаны быть проблемой. И с доработками конца двадцатого века физики показали, что эти дополнительные измерения способны перекинуть мост через пропасть между способами колебаний струнной теории и элементарными частицами, открытыми экспериментаторами.

Это одна из самых впечатляющих теоретических разработок; посмотрим, как она работает.

Объединение в высших измерениях

В 1919 Эйнштейн получил статью, которую легко можно было выбросить как бред больного. Она была написана малоизвестным немецким математиком по имени Теодор Калуца и в нескольких коротких страницах закладывала подход к объединению двух сил, известных в то время, гравитации и электромагнетизма. Чтобы достигнуть этой цели, Калуца предложил радикально отступить кое от чего настолько основополагающего, настолько полностью считающегося доказанным, что это казалось вне вопросов. Он предположил, что вселенная не имеет три пространственных измерения. Вместо этого, Калуца попросил Эйнштейна и остальное физическое сообщество принять во внимание возможность, что вселенная имеет четыре пространственных измерения, так что вместе со временем она имеет пять пространственно-временных измерений.

Первое, что это вообще означает? Ну, когда мы говорим, что имеется три пространственных измерения, мы имеем в виду, что имеется три независимых направления или оси, вдоль которых вы можете двигаться. Из вашего текущего положения вы можете описать их как влево/вправо, назад/вперед и вверх/вниз; во вселенной с тремя пространственными измерениями любое движение, которое вы предпринимаете, является некоторой комбинацией движений в этих трех направлениях. Эквивалентно, во вселенной с тремя пространственными измерениями вам нужно три блока информации, чтобы определить положение. В городе, например, вам нужна улица, где стоит здание, пересекающая ее улица и номер этажа, чтобы определить, где у вас вечеринка. А если вы хотите показать людям, до какого момента еда еще горячая, вам также надо определить четвертый блок данных: время. Это то, что мы имеем в виду, полагая пространство-время четырехмерным.

Калуца предположил, что в дополнение к осям влево/вправо, назад/вперед и вверх/вниз вселенная на самом деле имеет еще одно пространственное измерение, которое по некоторым причинам никто никогда не видел. Если точно, это означает, что имеется другое независимое направление, в котором вещи могут двигаться, а следовательно, что нам нужно задать четыре блока информации, чтобы определить точное положение в пространстве, и всего пять блоков информации, если мы также определяем время.

Ладно; это то, что предлагала полученная Эйнштейном в апреле 1919 статья.

Вопрос, почему Эйнштейн ее не выбросил? Мы не видим другое пространственное измерение – мы никогда не находили себя бесцельно плутающими, поскольку улица, пересекающая ее улица и номер этажа почему-то недостаточны, чтобы определить адрес, – так почему стоит рассматривать такую ненормальную идею? Ну, вот почему. Калуца обнаружил, что уравнения ОТО Эйнштейна могут быть легко и красиво математически расширены на вселенную, которая имеет на одно пространственное измерение больше. Калуца предпринял это расширение и нашел достаточно естественно, что версия ОТО с большим числом измерений не только включает оригинальные уравнения гравитации Эйнштейна, но вследствие лишнего пространственного измерения также и дополнительные уравнения. Когда Калуца изучил эти дополнительные уравнения, он открыл нечто экстраординарное: дополнительные уравнения были ничем иным, как уравнениями, которые Максвелл открыл в девятнадцатом веке для описания электромагнитного поля! Представив вселенную с одним новым пространственным измерением, Калуца предложил решение того, что Эйнштейн рассматривал как одну из самых важных проблем всей физики. Калуца нашел схему, которая объединила оригинальные уравнения ОТО Эйнштейна с оригинальными уравнениями электромагнетизма Максвелла. Именно поэтому Эйнштейн не выбросил прочь статью Калуцы.

Интуитивно вы можете думать о предложении Калуцы следующим образом. В ОТО Эйнштейн пробудил пространство и время. Поскольку они гнутся и растягиваются, Эйнштейн осознал, что он нашел геометрическое воплощение гравитационной силы. Статья Калуцы наводила на мысль, что геометрическое богатство пространства и времени еще больше. В то время, как Эйнштейн обнаружил, что гравитационные поля могут быть описаны как деформации и рябь в обычных трех пространственных и одном временном измерении, Калуца обнаружил, что во вселенной с дополнительным пространственным измерением будут дополнительные деформации и рябь. И эти деформации и рябь, как показал его анализ, будут в точности годиться для описания электромагнитных полей. В руках Калуцы собственный геометрический подход Эйнштейна ко вселенной продемонстрировал достаточную силу, чтобы объединить гравитацию и электромагнетизм.

Конечно, там все еще была проблема. Хотя математически все разработано, не было – и все еще нет – подтверждения пространственного измерения вне трех, о которых мы все знаем. Так что же, открытие Калуцы было всего лишь курьезом или оно как-то значимо для нашей вселенной? Калуца сильно верил в теорию – он, например, учился плавать путем изучения учебника по плаванию, а затем лишь путем ныряния в море, – но идея о невидимом пространственном измерении, неважно, насколько неотразима теория, все же звучит скандально. Затем в 1926 шведский физик Оскар Кляйн ввел в идею Калуцы новый поворот, который намекает, где дополнительные измерения могут быть скрыты.

Скрытые измерения

Чтобы понять идею Кляйна, представим муравья Филиппа Пети, гуляющего по длинному покрытому резиной туго натянутому канату, растянутому между горами Эверест и Лхоцзе. Разглядываемый с расстояния многих миль, как на Рис. 12.5, канат выглядит как одномерный объект вроде линии – объект, который имеет протяженность только вдоль своей длины. Если мы различили, что маленький червяк ползет вдоль каната навстречу Филиппу, мы дико кричим ему, поскольку он должен будет остановиться впереди за шаг от Филиппа, чтобы избежать беды. Конечно, после мгновенного размышления мы все осознаем, что имеется больше поверхности каната, чем измерение влево/вправо, которое мы можем непосредственно воспринимать. Хотя ее трудно различить невооруженным глазом с большого расстояния, поверхность каната имеет второе измерение: измерение по и против часовой стрелки, измерение, которое "завернуто" вокруг каната. С помощью скромного телескопа это циклическое измерение становится видимым, и мы видим, что червяк может двигаться не только по длинному, развернутому измерению влево/вправо, но также и по короткому, "скрученному" направлению по/против часовой стрелки. Так что в каждой точке каната червяк имеет два независимых направления, по которым он может двигаться (это то, что мы имеем в виду, когда мы говорим, что поверхность каната двумерна*), так что он может безопасно отстраниться от пути Филиппа, или отползая от него вперед, как мы первоначально представляли, или отползая вокруг маленького циклического измерения и пропуская Филиппа мимо.

(*) "Если вы посчитаете все направления влево, вправо, по часовой стрелке и против часовой стрелки отдельно, вы придете к заключению, что червяк может двигаться в четырех измерениях. Но когда мы говорим о "независимых" измерениях, мы всегда группируем те из них, которые лежат вдоль одинаковых геометрических осей – вроде влево и вправо, а также по часовой стрелке и против часовой стрелки".

Канат иллюстрирует, что измерения – независимые направления, в которых что-либо может двигаться, – выступают в двух качественно различающихся вариантах. Они могут быть большими и легко видимыми, как размерность поверхности каната влево/вправо, или они могут быть маленькими и более трудно различимыми, как размерность по/против часовой стрелки, которая закручена вокруг поверхности каната. В этом примере не является большой проблемой увидеть малый циклический пояс на поверхности каната. Все, что нам нужно было, это подходящий увеличительный инструмент. Но, как вы можете представить, чем меньше скрученное измерение, тем более трудно его будет обнаружить. На расстоянии нескольких миль сложность для обнаружения циклического измерения поверхности каната одна; она будет в некоторой степени другая для обнаружения циклического измерения чего-либо столь же тонкого, как зубная нить или узкое нервное волокно.

Рис 12.5 На удалении туго натянутый канат или провод выглядит одномерным, хотя в достаточно сильный телескоп его второе, скрученное измерение становится видимым.

Вклад Кляйна заключался в указании, что то, что справедливо для объекта внутри вселенной, может быть справедливо и для ткани самой вселенной. А именно, точно так, как поверхность каната имеет как большое, так и маленькое измерение, так же может быть и у ткани пространства. Может быть, что три известных всем нам измерения – влево/вправо, назад/вперед, вверх/вниз – подобны горизонтальному протяжению каната, большим измерениям, легко видимой их разновидности. Но точно так же, как поверхность каната имеет дополнительное, маленькое, скрученное, циклическое измерение, может быть, что ткань пространства также имеет маленькое, скрученное, циклическое измерение, настолько малое, что никто не имеет достаточно мощного увеличительного оборудования, чтобы обнаружить его существование. Вследствие его ничтожного размера, утверждал Кляйн, это измерение будет скрытым.

Насколько мало малое? Ну, включив определенные свойства квантовой механики в оригинальное предположение Калуцы, математический анализ Кляйна открыл, что радиус дополнительного циклического пространственного измерения, вероятно, будет порядка планковской длины[16], что определенно слишком мало для экспериментальной доступности (самое совершенное современное оборудование не может разрешить что-либо меньшее, чем тысячная часть размера атомных ядер, не достигая планковской длины более чем на фактор в миллион миллиардов). Однако, для воображаемого червяка планковского размера это мельчайшее скрученное циклическое измерение обеспечит новое направление, в котором он может странствовать точно так же свободно, как обычный червяк преодолевает циклическое измерение каната на Рис. 12.5. Конечно, точно так же, как обычный червяк находит, что там не так много места для исследований в направлении по часовой стрелке, прежде чем он окажется в своей стартовой точке, червяк планковской длины, ползущий вдоль скрученного измерения пространства, также будет постоянно возвращаться назад в свою стартовую точку. Но, оставив в стороне длину предпринятого им путешествия, скрученное измерение будет обеспечивать направление, в котором маленький червяк может двигаться так же легко, как он это делает в трех привычных развернутых измерениях.

Чтобы почувствовать интуитивный смысл того, на что это похоже, отметим, что то, на что мы ссылались как на скрученное измерение каната, – направление по/против часовой стрелки, – существует в каждой точке вдоль его протяженного измерения. Земной червяк может ползти вдоль циклического обода каната в любой точке вдоль его протяженной длины, так что поверхность каната может быть описана как имеющая одно длинное измерение с маленьким, циклическим измерением, прикрепленным к каждой точке, как на Рис. 12.6. Этот образ полезно иметь в уме, поскольку он также применим к предложению Кляйна для скрытого дополнительного пространственного измерения Калуцы.

Чтобы увидеть это, изучим еще раз ткань пространства путем последовательного показа его структуры на все меньших масштабах длины, как на Рис. 12.7. При первых нескольких уровнях увеличения ничего нового не обнаруживается: ткань пространства все еще выглядит трехмерной (что, как обычно, мы схематически представляем на печатной странице в виде двумерной сетки). Однако, когда мы опустимся до планковского масштаба, высшего уровня увеличения на рисунке, Кляйн внушает, что становится видимым новое скрученное измерение.

Рис 12.6 Поверхность натянутого каната имеет одно длинное измерение с циклическим измерением, присоединенным в каждой точке.

Рис 12.7 Предложение Калуцы-Кляйна заключается в том, что на очень малых масштабах пространство имеет дополнительное циклическое измерение, присоединенное к каждой привычной точке. Точно так же, как циклическое измерение каната существует в каждой точке вдоль его большого, протяженного измерения, циклическое измерение в этом предложении существует в каждой точке в привычных трех протяженных измерениях повседневной жизни.

На Рис. 12.7 мы проиллюстрировали это, дорисовав дополнительное циклическое измерение только в некоторых точках вдоль протяженных измерений (поскольку рисование кругов в каждой точке затемнит рисунок), и вы можете немедленно увидеть сходство с канатом на Рис. 12.6. В предложении Кляйна, следовательно, пространство должно представляться как имеющее три развернутых измерения (из которых мы показали на рисунке только два) с добавленным циклическим измерением, присоединенным к каждой точке. Отметим, что дополнительное измерение не есть выпуклость или петля внутри обычных трех пространственных измерений, как изобразительные ограничения рисунка могут заставить вас подумать. Вместо этого, дополнительное измерение есть новое измерение, полностью отличное от трех, нам известных, которое существует в каждой точке в нашем ординарном трехмерном пространстве, но столь мало, что ускользает от обнаружения даже самыми изощренными нашими инструментами.

С этой модификацией оригинальной идеи Калуцы Кляйн обеспечил ответ на то, как вселенная может иметь более, чем три пространственных измерения повседневного опыта, что дополнительное измерение остается скрытым; схема с тех пор стала известна как теория Калуцы-Кляйна. А поскольку дополнительное измерение пространства было все, что Калуце требовалось, чтобы соединить ОТО и электромагнетизм, теория Калуцы-Кляйна может показаться именно тем, что искал Эйнштейн. В самом деле, Эйнштейн и многие другие стали совершенно одержимы унификацией через новое, скрытое пространственное измерение и был предприняты решительные усилия, чтобы увидеть, будет ли этот подход работать в полных деталях. Но незадолго до этого теория Калуцы-Кляйна столкнулась со своими собственными проблемами. Вероятно, самая яркая из всех заключалась в том, что попытки включить электрон в картину с дополнительным измерением продемонстрировали свою неприменимость.[17] Эйнштейн продолжил барахтаться в схеме Калуцы-Кляйна, по меньшей мере, до начала 1940х, но начальные перспективы подхода так и не материализовались, и интерес постепенно вымер.

Однако, через несколько десятилетий теория Калуцы-Кляйна совершила впечатляющее возвращение.

Теория струн и скрытые размерности

В добавление к трудностям, с которыми теория Калуцы-Кляйна столкнулась при попытке описать микромир, была и другая причина для ученых сомневаться в этом подходе. Многие находили как произвольным, так и экстравагантным постулировать скрытую пространственную размерность. Это не то, как если бы Калуца пришел к идее нового пространственного измерения на основании жесткой цепочки дедуктивных рассуждений. Вместо этого он высосал идею из пальца, а после анализа ее последствий открылись неожиданные связи между ОТО и электромагнетизмом. Таким образом, хотя это было само по себе великое открытие, оно страдало недостатком ощущения неизбежности. Если бы вы спросили Калуцу и Кляйна, почему вселенная имеет пять пространственно-временных измерений, а не четыре, или шесть, или семь, или 7 000, коли на то пошло, они не смогли бы дать ответ, более убедительный, чем "Почему нет?"

Более чем через три десятилетия ситуация изменилась радикально. Теория струн является первым подходом для соединения ОТО и квантовой механики; более того, она имеет потенциал к объединению нашего понимания всех сил и всей материи. Но квантовомеханические уравнения теории струн не работают в четырех пространственно-временных измерениях, ни в пяти, шести, семи или 7 000. Вместо этого по причинам, обсуждающимся ниже в секции "Физика струн и дополнительные измерения", уравнения теории струн работают только в десяти пространственно-временных измерениях – девяти пространственных плюс время. Теория струн требует больше измерений.

Это фундаментально новый вид результата, с которым никогда раньше не сталкивались в истории физики. До струн ни одна теория совсем ничего не говорила о числе пространственных измерений во вселенной. Каждая теория от Ньютона к Максвеллу и к Эйнштейну полагала, что вселенная имеет три пространственных измерения, почти как мы все полагаем, что Солнце взойдет завтра. Калуца и Кляйн предложили поставить это под вопрос, подбросив мысль, что имеется четыре пространственных измерения, но это означало только другое допущение – отличающееся допущение, однако все равно допущение. Теперь же впервые теория струн обеспечила уравнения, которые предсказали число пространственных измерений. Вычисление – не допущение, не гипотеза, не внушенная догадка – определило число пространственных измерений в соответствии с теорией струн, и удивительной вещью оказалось, что вычисленное число равно не трем, а девяти. Теория струн неотвратимо привела нас ко вселенной с шестью дополнительным пространственными измерениями и потому обеспечила убедительную, готовую среду для оплаты счетов по идеям Калуцы и Кляйна.

Оригинальное предложение Калуцы и Кляйна предполагает только одно скрытое измерение, но оно легко обобщается на два, три или даже шесть дополнительных измерений, требуемых теорией струн. Например, на Рис. 12.8а мы заменили дополнительное циклическое измерение одномерной формы из Рис. 12.7 на поверхность сферы, двумерную форму (повторим из обсуждения в Главе 8, что поверхность сферы является двумерной, поскольку вам нужны два блока информации – вроде широты и долготы на земной поверхности, – чтобы определить положение).

(а) (b)

Рис 12.8 Смыкание вселенной с тремя обычными измерениями, представленными сеткой, и (а) двух скрученных измерений в форме пустых сфер, и (b) трех скрученных измерений в форме твердых шаров.

Как и с кругом, вы должны представлять сферу прикрепленной к каждой точке обычных измерений, даже если на Рис. 12.8а, чтобы оставить рисунок ясным, мы нарисовали только те сферы, которые лежат на пересечениях линий сетки. Во вселенной такого сорта вам всего понадобится пять блоков информации, чтобы определить положение в пространстве: три блока, чтобы определить ваше положение в больших измерениях (улица, пересекающая улица, номер этажа) и два блока, чтобы определить ваше положение на сфере (широта, долгота), прикрепленной к этой точке. Безусловно, если радиус сферы мал – в миллиарды раз меньше, чем атом, – последние два блока информации почти не будут иметь значения для относительно больших объектов вроде нас самих. Тем не менее, дополнительная размерность является интегральной частью ультрамикроскопического строения пространственной ткани. Ультрамикроскопическому червяку понадобятся все пять блоков информации и, если мы включим время, ему потребуется шесть блоков информации, чтобы указать, где будет вечеринка и в какое время.

Продвинемся еще на одно измерение дальше. На Рис. 12.8а мы рассмотреди только поверхность сфер. Представьте теперь, что, как на Рис.12.8b, ткань пространства включает также и внутренность сфер, – наш маленький планковского размера червяк может закопаться в сферу, как обычный червяк делает с яблоком, и свободно двигаться через ее внутренности. Чтобы определить положение червяка, теперь требуется шесть блоков информации: три, чтобы определить его положение в обычных протяженных пространственных измерениях, и еще три, чтобы определить его положение в шаре, прикрепленном к данной точке (широта, долгота, глубина проникновения). Вместе со временем, следовательно, это есть пример вселенной с семью пространственно-временными измерениями.

Теперь перепрыгнем дальше. Хотя это невозможно нарисовать, представьте, что в каждой точке в трех протяженных измерениях повседневной жизни вселенная имеет не одно дополнительное измерение как на Рис. 12.7, не два дополнительных измерения, как на Рис.12.8а, не три дополнительных измерения, как на Рис.12.8b, но шесть дополнительных пространственных измерений. Я, конечно, не могу визуализировать это, и я никогда не встречал никого, кто бы смог. Но его смысл ясен. Чтобы определить пространственное положение червяка планковского размера в такой вселенной, требуется девять блоков информации: три, чтобы определить его положение в обычных протяженных измерениях, и еще шесть, чтобы определить его положение в скрученных измерениях, прикрепленных к этой точке. Когда время также принимается во внимание, это оказывается вселенной с десятимерным пространством-временем, как требуется уравнениями теории струн. Если дополнительные шесть измерений скручены в достаточно малые образования, они легко ускользнут от обнаружения.

Форма скрытых размерностей

Уравнения теории струн на самом деле определяют больше, чем просто число пространственных размерностей. Они также определяют виды форм, которые дополнительные размерности могут принимать.[18] На предыдущих рисунках мы сосредоточились на простейших формах – круги, полые сферы, твердые шары, – но уравнения теории струн выбирают существенно более широкий класс шестимерных форм, известных как формы или многообразия или пространства Калаби-Яу. Эти пространства названы в честь двух математиков, Эугенио Калаби и Шинь-Тунь Яу, которые математически открыли их задолго до того, как стала очевидной их применимость к теории струн; грубая иллюстрация одного примера дана на Рис. 12.9а. Надо иметь в виду, что на этом рисунке двумерное изображение иллюстрирует шестимерный объект, и это приводит к большому числу существенных искажений. Даже при этих условиях рисунок дает грубое представление о том, на что похожи указанные формы. Если особая форма Калаби-Яу из Рис. 12.9а составляет дополнительные шесть измерений теории струн, пространство на ультрамикроскомическом масштабе будет иметь вид, иллюстрируемый на Рис.12.9b. Поскольку форма Калаби-Яу будет прилагаться к каждой точке в обычных трех измерениях, вы, и я и кто угодно другой прямо сейчас будет окружен и наполнен этими маленькими формами. Без преувеличения, если вы переходите из одного места в другое, ваше тело будет двигаться через все девять измерений, быстро и одно за другим проходя через целые формы, в среднем делая кажущимся, как будто вы не двигаетесь через дополнительные шесть измерений совсем.

(а) (b)

Рис 12.9 (а), Один из примеров форм или пространств Калаби-Яу, (b) Сильно увеличенный участок пространства с дополнительными измерениями в форме мельчайших пространств Калаби-Яу.

Если эти идеи верны, ультрамикроскопическая ткань космоса украшена богатейшей текстурой.

Физика струн и дополнительные измерения

Красота ОТО в том, что физика гравитации контролируется геометрией пространства. С дополнительными пространственными измерениями, предлагаемыми теорией струн, вы, очевидно, догадались, что мощь геометрии для определения физики должна значительно возрасти. И это происходит. Увидим это сначала, рассмотрев вопрос, который я до сих пор обходил стороной. Почему теория струн требует десяти пространственно-временных измерений? Это вопрос, на который трудно ответить нематематически, но я все-таки могу объяснить достаточно, чтобы проиллюстрировать, как он сводится к взаимодействию геометрии и физики.

Представьте струну, которая может колебаться только на двумерной поверхности плоского стола. Струна будет в состоянии осуществлять разнообразные способы колебаний, но только такие, которые включают движения в направлениях вправо/влево и вперед/назад на поверхности стола. Если теперь струне позволить колебаться в третьем направлении, двигаясь в направлении вверх/вниз, покидая поверхность стола, становятся достижимыми дополнительные способы колебаний. Теперь, хотя это тяжело нарисовать более чем в трех измерениях, это заключение – большее количество измерений означает большее количество способов (мод) колебаний – является общим. Если струна может колебаться в четвертом пространственном измерении, она может выполнить больше видов колебаний, чем она могла только в трех измерениях; если струна может колебаться в пятом пространственном измерении, она может проявить больше способов колебаний, чем это было только в четырех измерениях; и так далее. Это важный вывод, поскольку в теории струн имеется уравнение, которое требует, чтобы число независимых способов колебаний удовлетворяло очень точному ограничению. Если ограничение нарушается, математика теории струн разваливается и ее уравнения становятся бессмысленными. Во вселенной с тремя пространственными измерениями число способов колебаний слишком мало и ограничение не выполняется; с четырьмя пространственными измерениями число способов колебаний все еще слишком мало; для пяти, шести, семи или восьми измерение оно все еще слишком мало; но для девяти пространственных измерений ограничение на число способов колебаний выполняется в точности. Именно так теория струн определяет число пространственных измерений.* [19]

(*)"Позвольте мне подготовить вас к одному существенному результату, с которым мы столкнемся в следующей главе. Струнные теоретики десятки лет знали, что уравнения, которые они обычно используют для математического анализа теории струн являются приблизительными (точные уравнения оказывается на практике тяжело идентифицировать и понять). Однако, большинство думает, что приблизительные уравнения были достаточно точны для определения требуемого числа дополнительных измерений. Совсем недавно (и к шоку большинства физиков, работающих в этой области) некоторые струнные теоретики показали, что приближенные уравнения теряют одно измерение; сейчас признано, что теория требует семь дополнительных измерений. Как мы увидим, это не компроментирует материал, обсужденный в этой главе, но показывает, что он годится для более широкой, фактически более унифицированной схемы.[20]"

Хотя это хорошо иллюстрирует взаимодействие геометрии и физики, их объединение в рамках теории струн идет еще дальше и, фактически, обеспечивает способ обращения с критической проблемой, с которой мы сталкивались ранее. Повторим, что в попытках установить детальную связь между модами колебаний струны и известными семействами частиц физики потерпели крах. Они нашли, что имеется слишком много безмассовых способов колебаний струны и, более того, детальные свойства способов колебаний не соотносятся со свойствами известных частиц материи и сил. Но, о чем я не упоминал ранее, поскольку мы еще не обсуждали идею дополнительных измерений, хотя такие вычисления принимали в расчет число дополнительных измерений (отчасти объясняя, почему было найдено так много способов колебаний струн), они не принимали в расчет малого размера и сложной формы дополнительных измерений, – они предполагали, что все пространственные измерения плоские и полностью развернутые, – а это приводит к существенным отличиям.

Струны столь малы, что даже когда дополнительные шесть измерений свернуты в пространство Калаби-Яу, струны все еще колеблются в этих направлениях. По двум причинам это экстремально важно. Первое, это обеспечивает, что струны всегда колеблются во всех девяти пространственных измерениях, и потому ограничение на число способов колебаний продолжает выполняться, даже когда дополнительные измерения тесно скручены. Второе, точно так же, как способы колебаний потока воздуха, продуваемого через трубу, подвергаются воздействию искривлений и поворотов музыкального инструмента, способы колебаний струн подвергаются воздействию искривлений и поворотов в геометрии дополнительных шести измерений. Если вы изменили форму трубы, сделав путь прохождения воздуха более узким или сделав раструб длиннее, способы колебаний воздуха, а следовательно, звук инструмента изменится. Аналогично, если форма и размер дополнительных измерений модифицировались, это также существенно повлияет на точные свойства каждого возможного способа колебаний струны. А поскольку способ колебаний струн определяет ее массу и заряд, это значит, что дополнительные измерения играют стержневую роль в определении свойств частиц.

Это ключевое заключение. Точный размер и форма дополнительных измерений оказывают чрезвычайное воздействие на способы (моды) колебаний струн, а значит на свойства частиц. Поскольку базовая структура вселенной – от формирования галактик и звезд до существования жизни, как мы ее знаем, – чувствительно зависит от свойств частиц, код космоса может быть хорошо записан в геометрии пространства Калаби-Яу.

Мы видели один пример пространства Калаби-Яу на Рис. 12.9, но имеются, по меньшей мере, сотни тысяч других возможностей. Тогда вопрос заключается в том, какую форму Калаби-Яу, если это имеет место, образует часть пространственно-временной ткани, связанная с дополнительными измерениями. Это один из наиболее важных вопросов, стоящих перед теорией струн, поскольку только с определенным выбором формы Калаби-Яу детально определяются свойства колебательных мод струны. На сегодняшний день вопрос остается без ответа. Причина в том, что текущее понимание уравнений теории струн не обеспечивает проникновение в задачу, как выбрать одну форму из многих; с точки зрения известных уравнений каждое пространство Калаби-Яу так же пригодно, как и любое другое. Уравнения даже не определяют размера дополнительных измерений. Поскольку мы не видим дополнительных измерений, они должны быть малы, но вопрос о том, насколько точно малы, остается открытым.

Это фатальный порок теории? Возможно. Но я так не думаю. Как мы будем обсуждать более полно в следующей главе, точные уравнения теории струн ускользали от теоретиков в течение многих лет, так что многие труды использовали приблизительные уравнения. Это позволило взглянуть на огромное число свойств теории струн, но в определенных вопросах, – включая точный размер и форму дополнительных измерений, – приблизительные уравнения терпят нудачу. Поскольку мы продолжаем обострять наш математический анализ и усовершенствовать эти приблизительные уравнения, определение формы дополнительных измерений является первой – и, на мой взгляд, достижимой – целью. До сих пор эта цель остается за пределами достигнутого.

Тем не менее, мы все еще можем спросить, будет ли какой-нибудь выбор формы Калаби-Яу давать моды колебаний струны, которые полностью аппроксимируют известные частицы. И здесь ответ вполне радующий.

Хотя мы далеки от полного исследования каждой возможности, были найдены примеры форм Калаби-Яу, которые приводят к способам колебаний струн в грубом согласии с Таблицами 12.1 и 12.2. Например, в середине 1980х Филип Канделас, Гарри Горовиц, Эндрю Строминджер и Эдвард Виттен (ко физиков, которые осознали применимость пространств Калаби-Яу к теории струн) открыли, что каждая дырка, – термин, используемый в точно определенном математическом смысле, – содержащаяся в пространстве Калаби-Яу, приводит к семейству низкоэнергетических колебательных мод струны. Пространство Калаби-Яу с тремя дырками, следовательно, будет обеспечивать объяснение для повторяющейся структуры семейств элементарных частиц в Таблице 12.1. На самом деле, число таких "трехдырочных" пространств Калаби-Яу было найдено. Более того, среди этих приоритетных пространств Калаби-Яу есть такие, которые также дают точно правильное число частиц-переносчиков, а так же точно правильные электрические заряды и свойства ядерных сил большинства частиц в Таблицах 12.1 и 12.2.

Это чрезвычайно воодушевляющий результат; он никоим образом не подразумевался. В соединении ОТО и квантовой механики могущество теории струн достигло одной цели только чтобы найти, что к ней никак невозможно подойти отдельно от не менее важной цели объяснения свойств известных частиц материи и сил. Исследователи не сдаются, добиваясь блестящих результатов в теории, возможности которой казались неутешительными. Идти дальше и рассчитать точные массы частиц является значительно более манящим. Как мы обсуждали, частицы в Таблицах 12.1 и 12.2 имеют массы, которые отличаются от колебаний струны низшей энергии – нуля планковских масс – менее чем на одну часть на миллион миллиардов. Расчеты таких бесконечно малых отклонений требуют уровня точности, лежащего за пределами того, что мы можем предъявить с нашим сегодняшним пониманием уравнений теории струн.

В действительности, я подозреваю, как делают многие другие струнные теоретики, что малые массы в Таблицах 12.1 и 12.2 возникают в теории струн почти так же, как и в стандартной модели. Повторим из Главы 9, что в стандартной модели Хиггсово поле имеет ненулевую величину во всем пространстве и масса частицы зависит от того, насколько большую тормозящую силу она испытывает, когда она пробирается сквозь океан Хиггса. Аналогичный сценарий, вероятно, разворачивается и в струнной теории. Если гигантское собрание струн колеблется точно правильно скоординированным способом во всем пространстве, они могут обеспечивать однородный фон, который во всех смыслах и итогах будет неотличим от Хиггсова океана. Колебания струн, которые сначала давали нулевую массу, будут тогда обзаводиться малой ненулевой массой через тормозящую силу, которую они испытывают, когда они двигаются и колеблются сквозь струнную версию Хиггсова океана. Отметим, однако, что в стандартной модели тормозящая сила, испытываемая данной частицей, – а потому снабжающая ее массой, – определяется экспериментальными измерениями и является внешним параметром теории. В версии теории струн тормозящая сила – а потому массы способов колебаний – будет происходить из взаимодействий между струнами (поскольку Хиггсов океан будет сделан струнами) и должна быть вычислима. Теория струн, по крайней мере, в принципе, позволяет определить все свойства частиц из самой теории.

Никто этого не завершил, но, как подчеркивалось, теория струн все еще требует очень много работы. Со временем исследователи надеются полностью реализовать громадный потенциал этого подхода к объединению. Мотивация велика, поскольку велика потенциальная награда. При тяжелой работе и существенной удаче теория струн может однажды объяснить фундаментальные свойства частиц и затем объяснить, почему вселенная такова, какова она есть.

Ткань космоса в соответствии с теорией струн

Даже если многое в теории струн все еще лежит вне границ нашего понимания, она уже проявила впечатляющие новые перспективы. Самое поразительное, в преодолении разлома между ОТО и квантовой механикой теория струн обнаружила, что ткань космоса может иметь намного больше измерений, чем мы непосредственно ощущаем, – измерений, которые могут быть ключом к разрешению некоторых самых глубоких тайн вселенной. Более того, теория подразумевает, что привычные понятия пространства и времени, как мы их до сих пор понимали, могут быть не более чем приближениями к более фундаментальным концепциям, которые все еще дожидаются нашего открытия.

В начальные моменты вселенной эти свойства пространственно-временной ткани, которые сегодня доступны только математически, должны были проявляться. Очень рано, когда три привычных пространственных измерения также были малы, вероятно, различие между тем, что мы теперь называем большими измерениями и скрученными измерениями теории струн, было мало или совсем отсутствовало. Их текущее различие в размерах будет следствием космологической эволюции, которая способом, который мы еще не понимаем, могла бы выделить три пространственных измерения как специальные и представить только их для 14 миллиардов лет расширения, обсуждавшегося в предыдущих главах. Заглянув назад во времени еще дальше, увидим, что вся наблюдаемая вселенная будет сокращена к субпланковской области, так что то, что мы характеризовали как размытое пятно (на Рис. 10.6), теперь мы можем идентифицировать как область, где привычное пространство и время еще появляются из более фундаментальных сущностей, – какие бы они ни были, – что текущие исследования и стараются постичь.

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Курсовые