Как заработать свои первые деньги?
Слушайте больше на Подкасте Михалыча для молодежи
Изучение генетического контроля репарации (а также рекомбинации) позволило доказать участие некоторых нормальных процессов, происходящих в клетке, в превращении предмутационных изменений ДНК в мутации. В частности, оказалось, что процесс становления мутаций может быть генетически блокирован так же, как любой другой физиологический процесс. Так, изменение генов lex А или rеc А ведет к частичному или полному подавлению мутационного процесса под действием ультрафиолетового света, ионизирующих излучений и некоторых химических мутагенов.
Э. Виткин обратила внимание на связь нескольких явлений, для которых общей причиной служит облучение клеток ультрафиолетовым светом: 1) индукция профага лямбда; 2) повышение выживаемости облученного бактериофага лямбда при заражении им предварительно облученных клеток Е. coli по сравнению с выживаемостью в необлученных клетках — так называемая W-реактивация, открытая Дж. Уэйглом; 3) блокирование клеточных делений у некоторых мутантов Е. coli, в результате чего клетки приобретают нитевидную форму; 4) повышение частоты рекомбинации; 5) повышение частоты мутаций.
Оказалось, что W-реактивация бактериофага сопровождается повышением его мутабильности. Кроме того, явление W-реактива-ции так же зависит от дозы ультрафиолетового света, как и индукция профага лямбда. Для осуществления обоих процессов требуется нормальное состояние генов rec A+ и lex А +. У мутантов rес А и lex А они подавлены, как и образование нитей, не говоря уже о мутагенезе, индуцированном ультрафиолетовым светом.
Параллелизм в проявлении индукции профага и W-реактивации (сопровождаемой повышением мутабильности) указывает на существование индуцируемой системы репарации, которая в связи с этим получила наименование SOS-репарации, т. е. репарации, включаемой для спасения. Индуцибельная система репарации действует по механизму пострепликативной репарации. На это указывает ее зависимость от гена rеc А. SOS-репарация включается в тех случаях, когда «безошибочная» дорепликативная система репарации не справляется с устранением повреждений или когда она блокирована мутационным путем. Для индукции системы SOS-репарации требуется 30—60 димеров тимина на геномЕ. coli. Сигналом индукции служит задержка репликации, которая при этом наблюдается.
Связь репарации и мутационного процесса показана для Drosophila melanogaster. Так, при действии кофеина на недокармливаемых мух наблюдается четкий антимутагенный эффект, судя по критерию спонтанных потерь Х-хромосомы. Известен мутатор ти у дрозофилы, в присутствии которого мухи проявляют повышенную чувствительность к рентгеновым лучам и метилметансульфонату. Мутатор ти находится в непосредственной близости к мутации С (3) G, блокирующей мейотическую рекомбинацию.
bio |
|

Рис. 9.8. Схема интеграции и эксцизии генома бактериофага γ за счет
сайт-специфической рекомбинации с хромосомой Е. coli и образование
трансдуцирующих частиц
вопрос 55
Mismatch repair – MMR. С неправильным основанием связывается белок MutS, с которым затем связываются белок MutL. Это событие активирует латентную эндонуклеазу MutH. Образуется репарационный комплекс с затратой 1 молекулы АТР.
Белок MutH разрезает неметилированную нить ДНК по сайту GATC, который может располагаться по любую сторону от неправильного основания.
Затем ДНК-хеликаза II (MutU = UvrD) расплетает надрезанную нить ДНК между надрезом и неспаренным основанием (включая его) и вытесняет ее из гетеродуплекса.
Экзонуклеаза I (если это 3'-конец) или экзонуклеаза VII (если это 5'-конец) гидролизует вытесненную нить. Этот процесс нуждается в MutL и MutS. Вырезаются фрагменты порядка 1000 н.
Затем образовавшаяся брешь застраивается ДНК-полимеразой III в присутствии белка SSB. В завершение, ДНК-лигаза восстанавливает фосфодиэфирную связь.
Система MMR у эукариот организована сложнее функционирует эффективнее по сравнению с бактериями. У эукариот MMR исправляет все некомплементарные пары оснований и, кроме того, репарирует делеции или инсерции размером до 12 н. У бактерий MMR неспособна исправлять пары С*С и репарирует делеции/инсерции не более 3 н. Ключевые белки MMR – MutL и MutS высококонсервативны, их гомологи обнаружены у всех организмов от E. coli до человека.
56. Репарация ДНК
Удивительная стабильность генетического материала — ДНК связана отнюдь не с ее консервативностью, а с существованием в клетках всех живых организмов специальных систем репарации, устраняющих из ДНК возникающие в ней повреждения.
Явление репарации, или восстановления жизнеспособности клетки, после действия на нее гамма - и рентгеновых лучей было открыто в 1958 г. у диплоидных дрожжей. Повреждения ДНК, возникающие при действии излучений и химических агентов, в конечном счете приводят к нарушению регулярной Уотсон-Криковской структуры, что выражается в локальной денатурации молекулы и приводят к частичному или полному блокированию репликации. Именно такие нарушения конформации, а не конкретные изменения мономеров служат мишенью для большинства систем репарации ДНК. Существует несколько систем, осущ. репарацию. В каждую входит 4 типа ферментов:1й – узнающий «неправильный»участок и разрывающий цепь вблизи него, 2й – удал. повр. участок,3й-днк-полимераза,4й-днк-лигаза. В заав от типа повреждений меняются 1й и 2й фермент. У бактерий имеются по крайней мере 2 ферментные системы, ведущие Р. Первая осуществляет вырезание и ресинтез на небольшом участке в 5—7 нуклеотидов, вторая — на участке в тысячу нуклеотидов и более. Ферменты второй системы Р. участвуют также в процессах генетической рекомбинации. В случае повреждений, вызванных, например, УФ-светом, нормальная клетка кишечной палочки способна репарировать до 2000 повреждений; клетка с выведенной из строя первой системой Р. — около 100 повреждений; клетка с выведенными из строя обеими системами Р. погибает от одного повреждения. Существуют бактерии с исключительно активными ферментами Р. (например, Micrococcus radiodurans), которые благодаря этому способны выживать в воде, охлаждающей ядерные реакторы.
Ферментные системы Р., как полагают, принимают участие и в нормальной репликации ДНК, т. е. её удвоении. При репликации материнская ДНК деспирализуется (раскручивается), что может сопровождаться разрывами её нитей. Кроме того, дочерние цепи ДНК синтезируются в виде небольших фрагментов. Поэтому заключительная фаза репликации — Р. всех дефектов, возникших при синтезе ДНК. Важная функция второй системы Р. — её участие в образовании мутаций. Под действием различных мутагенов в ДНК образуются производные нуклеотидов, чуждые клетке. Они устраняются системой Р., которая заменяет их на нуклеотиды, естественные для ДНК, но иногда измененные по сравнению с первоначальными. ДНК привело к коренным изменениям представлений о молекулярных механизмах, обеспечивающих стабильность генетического аппарата клеток и контролирующих темп мутационного процесса.
57.Репарация ДНК –фотореактивация, деалкилирование, реп. однонитевых разрывов, р.АП-сайтов.
Мутации, вызванные воздействием ультрафиолетового света, могут репарироваться благодаря явлению фотореактивации. Фотореактивация заключается в восстановлении биологической активности клеток или молекул ДНК, поврежденных ультрафиолетовым излучением в результате последующего воздействия видимого света. При фотореактивации происходит мономеризация циклобутановых димеров тимина и других пиримидиновых димеров in situ. Известна так называемая неферментативная коротковолновая фотореактивация, которая заключается в мономеризации димеров при действии ультрафиолетового света с длиной волны 240 нм, а также ферментативная фотореактивация. Именно последнюю обычно и подразумевают под собственно фотореактивацией. Фотореактивация при действии видимого света (300—400 нм — наиболее активная часть спектра) была обнаружена в 1949 г. в нескольких лабораториях. Механизм этого явления был раскрыт в начале 60-х годов нашего века после выделения К. Рупертом из клеток микроорганизмов фермента фотореактивации — дезоксирибопиримидинфотолиазы. Экстракты дрожжей оказались способными восстанавливать трансформирующую активность ДНК Haemophyllus influenzae на свету. Субстратом фермента фотореактивации служат димеры пиримидиновых оснований, с которыми он образует комплекс в темноте (с неповрежденной ДНК фермент не связывается). На свету комплекс распадается, при этом происходит мономеризация димеров. В клетке эукариот фермент локализован в ядре, у прокариот — в непосредственной близости к нуклеоиду. В частности, он не обнаруживается в безнуклеоидных миниклетках, которые образуют некоторые мутанты Е. coli. Известен мутант phr E. coli, у которого блокирована фотореактивация. При облучении видимым светом у этого мутанта не исчезают тиминовые димеры из ДНК. Фермент фотореактивации найден у примитивных микроорганизмов, как микоплазмы, у многих высших растений и животных. Фермент образует стабильный комплекс с пиримидиновым димером и используя энергию поглощенног им света разрушает димер без разрыва цепей ДНК.
Если под воздействием алкилирующих агентов - N-метил - N-нитрозомочевины или N1, N-диметилнитрозогуанидина, в ДНК образовался О6- метил - или О6-алкилзамещенные гуаниновые остатки, то деалкилирование таких остатков идет при участии ферментов - О6-метилгуанин-ДНК-алкилтрансферазы, которая катализирует перенос алкильных групп на сульфгидрильные группы цистеиновых остатков фермента, при этом акцепторный белок инактивируется. Это у бактерий и млекопитающих.
Репарация однонитевых разрывов ДНК осуществляется последовательным действием 3'-фосфодиэстеразы, ДНК-полимеразы b и ДНК-лигазы [18]. Восстановление однонитевого разрыва ДНК происходит с использованием в качестве матрицы комплиментарной цепочки ДНК. Репарация данного типа повреждений может также происходить с участием механизма эксцизионной репарации нуклеотидов.
Эксцизионная репарация осуществляется в несколько этапов. На первом этапе поврежденное основание удаляется ДНК гликозилазами, далее сахар без основания (АП-апуриновый-сайт) вырезается АП-эндонуклеазами. На втором этапе образовавшаяся брешь размером в одно основание восстанавливается до исходной последовательности с помощью совместного действия экзонуклеаз, полимеразы и ДНК лигазы
58. Эксцизионная репарация
Эксцизионную репарацию, т. е. связанную с удалением поврежденного участка ДНК, называют также репарацией по типу выщепления — замещения или более образно «механизм режь — латай». Наиболее подробно изучена именно репарация ДНК, содержащей тиминовые димеры. Появление димеров приводит к локальной денатурации ДНК, что влечет за собой нарушение процесса репликации: каждый тиминовый димер в ДНК Е. coli задерживает репликацию на 10 с.
Эксцизионная репарация представляет собой многоэтапный процесс и заключается в: 1) «узнавании» димера, 2) надрезании одной цепи ДНК вблизи димера — инцизии, 3) удалении димера — эксцизии, 4) ресинтезе ДНК и 5) восстановлении непрерывности репарируемой цепи за счет образования ковалентных связей сахарофосфатного скелета молекулы.
«Узнавание» повреждения в ДНК осуществляет фермент УФ-эндонуклеаза, который реагирует не только на димеры тимина, но и на многие другие изменения, приводящие к локальному нарушению структуры ДНК. Эндонуклеаза ответственна и за инцизию, т. е. надрезание одной цепи ДНК (разрыв фосфодиэфирных связей) непосредственно около димера с 5'-конца в поврежденной цепи. Эксперименты in vitro с облученной ДНК показали, что число однонитевых разрывов оказывается равным числу димеров в молекуле.
Эксцизию, или вырезание димера из молекулы ДНК, осуществляет другая нуклеаза. Димер удаляется в составе короткого олигонуклеотида (3—5 оснований), что может сопровождаться дальнейшей деградацией поврежденной спирали. Продукты деградации облученной ДНК, содержащие тиминовые димеры, можно обнаружить в клетках. У некоторых бактерий димеры находили и в культуральной среде. Деградацию ДНК осуществляет АТФ-зависимая ДНКаза. В результате эксцизии и последующей деградации ДНК образуются однонитевые бреши, или пробелы.
Ресинтез ДНК, в результате которого заполняются бреши, идет с использованием в качестве матрицы интактной цепи. Такой репаративный синтез ДНК напоминает «дополнительную» репликацию, обнаруженную в пахитене у эукариот.
Основной фермент, ответственный за эксцизию димеров и репаративный синтез ДНК, — это ДНК-полимераза I, кодируемая геном pоl А. Тем не менее у мутантов pol А, дефектных по ДНК-полимеразе I, все же наблюдается остаточный репаративный синтез, который связан с активностью ДНК-полимеразы II.
Известно, что неполуконсервативный синтез ДНК в 99% случаев происходит на коротких участках длиной до 30 нуклеотидов. За эту реакцию ответственна ДНК-полимераза I. В 1% случаев синтез идет на гораздо более длинных отрезках — 1000—1500 нуклеотидов
По-видимому, эту реакцию и осуществляет ДНК-полимераза II.
Последний этап эксцизионной репарации заключается в восстановлении непрерывности репарируемой цепи ДНК с помощью фермента ДНК-лигазы, кодируемого геном lig E. coli. Температурочувствительные мутанты по этому гену не способны не только завершать процесс эксцизионной репарации в непермиссивных условиях, но и накапливают фрагменты Оказаки при репликации ДНК.
59. Неспаренные основания в ДНК могут возникать в результате трех событий:
1) прямого повреждения оснований ДНК или их предшественников продуктами клеточного метаболизма;
2) ошибочной подстановки некомплементарного основания ДНК-полимеразой в ходе репликации
3) рекомбинационной интеграции однонитевого участка ДНК в неабсолютно идентичную ДНК, партнера по рекомбинации.
Все события приведут к образованию гетеродуплексной ДНК , которая и становится субстратом для ферментов, корректирующих неправильные пары оснований.
Процесс репарации ДНК при обнаружении ферментами неканонической пары в дуплексе ДНК проходит через ряд реакций.
Обычно такая цепь реакций начинается с обнаружения и удаления одного из нуклеиновых оснований неканонической пары в ДНК, катализируемого соответствующим ферментом группы AP-эндонуклеаз типа II (апуриновых/апиримидиновых эндонуклеаз)
Затем происходит гидролитическое расщепление 3'-фосфоэфирной связи, причем фосфат остается в 5'-положении уходящей цепи ДНК. Далее с 3'-концом в месте расщепления цепи связывается ДНК-полимераза бета , приводящая к образованию шиффа между ферментом и 3'-цепью ДНК, катализирующая гидролитическое удаление дезоксирибозилфосфатного остатка (реакция В), таким образом освобождая 3'-конец для включения соответствующего канонической паре нуклеотида.
60.SOS-репарация относится к пострепликативной репарации. Этот тип репарации был открыт в клетках мутантов E. coli, не способных выщеплять тиминовые димеры. В таких клетках после ультрафиолетового облучения происходит репликация ДНК, хотя и медленнее, чем в клетках дикого типа. Показано, что в клетках мутантов uvr А после действия ультрафиолетового света синтезируется ДНК с однонитевыми пробелами, или брешами, причем длина вновь синтезированных фрагментов соответствует среднему расстоянию между возникшими в родительской ДНК тиминовыми димерами. Таким образом, после репликации нерепарированной ДНК против тиминовых димеров образуются бреши, которые, как оказалось, исчезают при последующей инкубации клеток в питательной среде. Этот тип репарации не происходит в клетках гес-мутантов, дефектных по рекомбинации. Поэтому постреплика-тивную репарацию называют также рекомбинационной репарацией.
Механизм пострепликативной репарации наименее специфичен, так как здесь отсутствует этап узнавания повреждения. Представления об этом типе репарации связаны со знанием механизмарекомбинации. Рекомбинационная пострепликативнаярепарация — это быстрый способ восстановления нативнойструктуры по крайней мере части дочерних молекул ДНК. При этом тиминовые димеры остаются в исходных родительских нитях. Эта репарация происходит уже в первые минуты после облучения.
Существует и другая разновидность — медленная пострепликативная репарация, для осуществления которой требуется несколько часов. Ее проводит система ферментов, которых нет в необлученных клетках и которую индуцирует облучение. Этот механизм получил наименование SOS-репарации. Его характерная черта — неточность восстановления первичной структуры ДНК, в связи с чем он получил также название репарации, склонной к ошибкам. При этом, по мнению ряда авторов, возможен репаративный синтез ДНК «в обход» тиминовых димеров, или, точнее, за счет использования в качестве матрицы цепи ДНК, содержащей димеры.
Пострепликативная репарация существует не только у бактерий, но и в клетках эукариот. Она обнаружена и у млекопитающих, для которых получены данные о том, что пострепликативные бреши могут заполняться не за счет рекомбинации, а за счет синтеза ДНК de novo. Один из типов пигментной ксеродермы у человека (XPvar) связан с блоком пострепликативной репарации.
61. Мобильные генетические элементы
С момента возникновения хромосомной теории наследственности до конца 70-х годов представление о том, что каждый ген имеет определенное место на хромосоме и не способен произвольно менять его, казалось незыблемым. Единственным известным способом перемещения генов друг относительно друга были хромосомные мутации — транслокации и инверсии. Другое очень распространенное и обоснованное представление гласит о том, что в геноме данного вида организмов содержится вполне определенное количество копий какого-либо конкретного гена. Изменение числа копий может также происходить в результате хромосомных мутаций — дупликаций и делений..В 40—50-х годах XX в. американская исследовательница Б. Мак-Клинток генетическими методами показала, что в хромосомах кукурузы предположительно существуют генетические элементы, способные перемещаться в геноме — исчезать с прежних мест и появляться в новых. Спустя четверть века американские и советские генетики независимо методами молекулярной биологии и генной инженерии доказали существование генетических элементов, способных к перемещению.
Свойства мобильных генетических элементов. Мобильные генетические элементы обнаружены у самых разных организмов: у бактерий, дрожжей, растений и животных. Мобильные генетические элементы, выделяемые у разных видов, существенно отличаются по длине нуклеотидной последовательности и, следовательно, свойствам. У дрозофилы, хорошо изученной в этом отношении, описано около десяти типов мобильных элементов, одни из которых похожи друг на друга, иные резко отличаются. Количество копий, содержащихся в одном геноме, колеблется для разных мобильных элементов от К) до 1000. Длина нуклеотидной последовательности мобильных элементов варьирует в широких пределах, от 1 тыс. до 10 тыс. пар нуклеотидов. Наличие на концах длинных концевых повторов — типичная черта строения мобильных элементов.
Способы перемещения. Существует, вероятно, не менее двух способов перемещения мобильных генетических элементов. Первый из них связан с «вырезанием» мобильного элемента в одном месте хромосом и встройкой его в другом месте. Такие перемещения, по-видимому, имеют обычно случайный, ненаправленный характер. Другой тип событий представляет собой направленные перемещения генетических элементов. В этом случае в исходном положении мобильный элемент сохраняется, но появляется и в новом, хотя и вполне определенном месте. Таким образом, в данном случае речь идет о появлении дополнительной копии мобильного элемента. Для этого необходимо удвоение молекулы ДНК данного мобильного элемента и его последующее встраивание в определенное место генома. Роль мобильных генетических элементов еще предстоит тщательно изучить. Однако в отдельных случаях уже имеется ясность. Так, Б. Мак-Клинток показала, что встраивание мобильного элемента рядом с геном, контролирующим окраску семян у кукурузы может включать этот ген. В результате окраска зерен изменяется, например с красной на белую. Прозорливость Б. Мак-Клинток состоит в том, что своими генетическими исследованиями она предсказала существование мобильных элементов в каком-либо гене или в непосредственной близости от него, что может приводить к резким наследуемым изменениям его состояния, т. е. по существу к появлению мутации.
В последнее время стало ясно, что многие давно известные и хорошо изученные точечные мутации у дрозофилы, мыши и других организмов в действительности представляют собой результат встраивания или вырезания мобильных генетических элементов.
45% генома – подвижные (мобильные, или мигрирующие) элементы (ПЭ).
Биологическая роль ПЭ. Проявляются как в онто-, так и в филогенезе.
1. Горизонтальный перенос устойчивости к антибиотикам, лекарствам, ядам – у бактерий.
2. Мутации генов за счет включения ПЭ в кодирующую часть генов.
3. Вмешательство в работу клеточных генов – изменение их активности (рак).
4. Перестройки хромосом, перенос генов и целых наборов генов в пределах одного генома и из одного генома (напр., вируса) в другой (хозяина).
5. Стабилилизация концов хромосом у дрозофил.
62. Общая схема гомолог. рекомбинации. Образ-е делеций и дупликаций в результ внутримолек и межмолек эктопической рекомбинации.
Чаще всего рекомбинацию в узком смысле слова связ с кроссинговером, т.е. с перекомбинацией генов, локализ. в гомологичных хромосомах(т. е.гомологичная рекомбинация = кроссинговер). Разработана гипотеза «разрыв-воссоединение». Модель Холлидэя:Проц рекомбинации инициируют разрывы в нитях ДНК одинаковой полярности. Разрывы могут быть и не строго гомологичны. 1этап: молекулы ДНК, вступающие в рекомбинацию, образ. гибридные участки –так наз гетеродуплексы, в кот одна цепь происх от одной молек, а др - от другой. Это полухиазма. Затем она может видоизменяться путем миграции вдоль конъюгирующих хроматид(мол-л ДНК). Этот проц наз миграция ветвей полухиазмы. 2этап: в точке перекреста нити разрываются. При этом рвутся либо нити, в кот были первичные разрывы, либо другие две. Предполаг, что оба типа разрывов равновероятны. Т. о., получаются либо две нерекомбинантные по концевым маркерам молекулы(А-С, а-с), несущие гибридный участок-зону гетеродуплекса в районе средн маркера В\b, либо 2 мол, рекомбинантные по концевым маркерам и также гетеродуплексные в районе средн маркера.
Поскольку, согласно положению Уотсона и Крика, мутации - это изменения чередования нуклеотидов в ДНК, аллели одного гена, в частности B/b, различаются по составу нуклеотидов( как мин по 1 паре оснований). Тогда в участке гетеродуплекса должна образоваться зона локального неспаривания оснований. Эти участки узнают спец ферменты репарации, обеспечивающие структ стабильность ДНК. Они устраняют неспаренное основание и заменяют его на комплементарное. В таком проц коррекции с равной вероятностью матрицей служит 1 из 2 нитей гетеродуплекса.
Эктопическая рекомб. –кроссинговер между отдельно повторяющимися гомологичными последовательностями, разбросанными по геному.
Внутрихромосомные перестройки(=абберации) подразделяют на дефишенси, или концевые нехватки; делеции — выпадения частей хромосомы, не захватывающие теломеру; дупликации, или удвоения (умножения) части хромосомы; инверсии — изменения чередования генов в хромосоме вследствие поворота участка хромосомы на 180°.Межхромосомные перестройки включают транслокации — перемещения части одной хромосомы на другую, не гомологичную ей. Делеции. Вследствие нехваток хромосомы укорачиваются, и физическое отсутствие участка одного из гомологов приводит к гемизиготному состоянию генов, находящихся в нормальном гомологе. Если теряются доминантные аллели одного из гомологов гетерозиготы, то наблюдается фенотипическое проявление рецессивных аллелей хромосомы, не затронутой аберрацией. Поскольку вследствие делеций теряются участки хромосом, у гетерозигот по этим..перестройкам наблюдаются характерные нарушения. Бoлee длинная хромосома образует петлю на участке, соответствующем делеции. Делеции обычно летальны в гомозиготе, что указывает на выпадение жизненно важных генов. Дупликации могут происх в пределах одной хр или сопровождаться переносом копии участка на др хр.
Повторы, возникшие в одной хромосоме, могут располагаться тандемно (ABCBCDE...) или инвертировано(АВССВDE). По-видимому, главной причиной множественных повторов участков генетического материала является так наз неравный кроссинговер. Дупликации и делеции часто возникают в результате разрывов хромосом. Дупликации играют существенную роль в эволюции генома, поскольку они создают дополнительные участки генетического материала, функция которых может быть изменена в результате мутаций и последующего естественного отбора.
63. Сайт-специфическая рекомбинация.
Геном фага γ проникает в бактериальную клетку в линейной форме, однако на концах линейной молекулы ДНК есть так называемые липкие концы — однонитевые участки по 12 нуклеотидов, комплементарные друг другу. В клетке ДНК γ замыкается в кольцо. В таком виде она интегрирует в геном бактерии. Кольцо генома А, реципрокно рекомбинирует с кольцом бактериальной хромосомы. Один обмен приводит к интеграции ДНК фага γ с ДНК бактериальной хромосомы. Интеграция профага может происходить только в одном месте на хромосоме Е. coli, названном att X (attachment site/.)- Аналогичный участок есть в геноме бактериофага. При этом рекомбинация происходит в отсутствие протяженной гомологии. Общим у фага и бактерии оказался участок всего в 15 п. н.:
...GCTTTTTTATACTAA...
(показана только одна цепь ДНК)
Вырезание (эксцизия) профага из хромосомы осуществляется по тому же механизму реципрокной, сайт-специфической рекомбинации. Как интеграцию, так и эксцизию профага Л контролируют два фаговых гена: int и xis. Сайт-специфическая рекомбинация происходит точно, но не безошибочно. Приблизительно один раз на 1 млн. при эксцизии профага рекомбинация осуществляется не в сайте, а захватывает участки gal или bio. Так возникают трансдуцирующие частицы, у которых часть генетического материала профага замещена генами бактерии. Во всех этих случаях в рекомбинацию вовлекаются те же последовательности из 15 пар нуклеотидов, которые встречаются в генах gal и bio. За пределами этих 15 п. н. гомология отсутствует. Сайт-специфическую рекомбинацию проводит фермент интеграза, кодируемый локусом int фага γ.
64. Транспозиция. Структурная и функциональная организация мобильных генетических элементов про - и эукариот.
Классификация мутаций: внутрихромосомные, межхромосомные перестройки и промежуточное положение – транспозиции, т. к. они могут происходить как между негомологичными хромосомами, так и в пределах одной хромосомы.
Транспозиция – перемещение небольших участков генетического материала в пределах одной хромосомы или между разными хромосомами. Происходят при участии особых подвижных или мигрирующих генетических элементов. Изучение молекулярной структуры мобильных генетических эл-тов на мутантной по 3 lac-генам Е. coli –1960. Общими для этих мутантов были вставки большей или меньей длины. Эти вставляемые в разные участки генома молекулы ДНК – IS-элементы (insertion sequenses). Особенности этих элементов: 1)на концах инвертированные повторы нуклеотидной последовательности (десятки пар нуклеотидов) 2) большинство Isэлементов содержит ген для фермента транспозазы, ответственных за их перемещение 3) могут содержать несколько сигналов начала и конца транскрипции 4) в точке внедрения каждого элемента всегда обнаруживается дупликация (4-9 пар нуклеотидов). Есть 3 мех-ма транспозиции для эукариот: 1) эксцизия предсуществующего транспозона с переносом на новое место – нерепликативная транспозиция. 2) репликация ДНК транспозона с последующей траспозицией - репликативная транспозиция 3) обратная транскрипция РНК-копии транспозона и перемещение ДНК-копии на новое место – РНК-опосредовання транспозиция.
65. Перемещаясь случайным образом, мобильные генетические элементы существенно влияют на структуру генетического материала хозяина и имеют фундаментальное значение в формировании генетической изменчивости. Считают, что транспозиционная активность МГЭ вызывает до 80 % спонтанных мутаций и является основной причиной их возникновения. Мобильные элементы оказывают различные регуляторные эффекты.
ДКП содержат двунуклеотидные инвертированные повторы на концах и еще ряд повторов на некотором расстоянии от концов, разнообразные регуляторные элементы (промоторы и терминаторы и энхансеры транскрипции). Наличием регуляторных элементов в ДКП обусловлены различные эффекты ретровирусов и ретротранспозонов, встроенных в хромосомы, на экспрессию соседних генов.
Стабильность гена in vivo является одним из его жизненно важных свойств. Однако оказалось, что существование большинства позвоночных животных зависит не только от стабильности их генома, но и от запрограммированной нестабильности ряда генетических локусов.
Например, функционирование иммунной системы основано на происходящих в онтогенезе перестройках генетического материала в локусах, заключающих в себе последовательности генов и
ммуноглобулинов .
66. IS-элементы. В большинстве своем мобильные элементы прокариот и эукариот построены по сходному плану. Сами элементы состоят из центральной части, фланкированной инвертированными повторами (ИП). Центральная часть обычно содержит ген (или гены), кодирующие белки транспозиции. Главный белок транспозиции – транспозаза. Некоторые бактериальные транспозоны имеют на концах длинные ИП, в свою очередь являющиеся мобильными IS-элементами. В этих случаях центральная часть транспозона содержит только посторонние гены, а гены транспозиции находятся в IS-элементах, причем один из них инактивирован одной или более мутациями.
Структура мобильных элементов определяет механизмы их перемещений. Хотя эти механизмы различаются в деталях, имеется общий принцип реакций транспозиции.
Процесс происходит в 3 этапа.
На первом этапе 2 молекулы транспозазы соединяются с концами подвижного элемента, сводят концы вместе и генерирует в них разрывы, чаще всего в обеих цепях. Затем транспозаза делает в обеих цепях ДНК-мишени ступенчатые разрывы, отстоящие друг от друга на столько пар нуклеотидов, сколько обнаруживается в ДПП данного элемента.
Второй этап – обмен цепями, приводящий к рекомбинации между ДНК оставляя, за счет ступенчатости разрывов, бреши между 5'-P-концами элемента и 3'-OH-концами мишени. Катализируемое транспозазой расщепление и замыкание концов цепей ДНК происходит без потери энергии связей и не требует АТФ, что напоминает консервативную сайт-специфическую рекомбинацию. Отличие от последней заключается в том, что транспозаза не образует ковалентной связи с 5’-P концом ДНК.
На третьем этапе происходит репаративный синтез брешей, формирующий ДПП, а иногда еще и репликация элемента. Таков общий общий механизм транспозиционной рекомбинации.
IS-элементы: небольшие (размером не более 2,5 т. п.н.) элементы, которые состоят из центральной части с геном транспозазы, фланкированной двумя инвертированными повторами. Основные механизмы транспозиций(на рисунках):Репликативная транспозиция отличается тем, что мобильный элемент, перемещаясь в другую молекулу, оставляет свою копию в исходной ДНК. Это может произойти только за счет удвоения (репликации) элемента.
При репликативной транспозиции на концах подвижного элемента происходят разрывы с образованием выступающих 3’-OH-концов. Одновременно транспозаза делает разрывы в ДНК-мишени. 3’-OH-концы подвижного элемента ковалентно связываются с 5’-Р-концами мишени, и образуется структура с двумя вилками репликации на концах подвижного элемента. В вилках репликации инициируется синтез ДНК (направленный «внутрь»). В результате образуется две копии мобильного элемента. При этом репликоны, содержащие «старую» и «новую» копию мобильного элемента сливаются (образуется коинтеграт).
Коинтеграты разрешаются (разрезаются) на 2 репликона в рекомбинационном res-сайте ферментом резолвазой. Старая и новая копии мобильного элемента в коинтеграте находятся в одной ориентации, и разрешение коинтеграта идет через сложную фигуру, напоминающую восьмерку. В результате снова образуется 2 репликона, но теперь каждый из них несет копию мобильного элемента. Реакция относится к сайт-специфической рекомбинации.
Репликативный механизм транспозиции распространен сравнительно мало. Он обнаружен у мобильного элемента Is6, фага Mu и бактериальных транспозонов семейства Tn3 с короткими ИП.
Нерепликативная транспозиция заключается в вырезании элемента и его перемещении в новое место. При этом 2 молек-OH-концы элемента соединяются с 5-Р-концами ДНК-мишени, а между 3’-OH-концами ДНК-мишени и 5’-Р - концами элемента образуется брешь, которая заполняется с помощью репаративного синтеза ДНК, в результате чего на концах мобильного элемента возникают ДПП строго фиксированной длины.
В исходном репликоне остается ДНР. Будет ли он репарирован – зависит хозяйской клетки.
Этот механизм характерен для большинства мобильных элементов бактерий и эукариотических элементов с короткими ИП. По такому типу перемещаются многие IS-элементы и мобильные элементы, которые называют составными: Tn5, Tn9, Tn10 и другие. Составные транспозоны отличаются тем, что у них инвертированные повторы представлены IS-элементами, которые находятся в обратной или (гораздо реже, например, Tn9) в прямой ориентации.
Вопрос № 67
(дуплицированными прямыми повторами (ДПП), инвертированные повторы (ИП))
Собственно транспозоны несут кроме транспозазы другие гены, не имеющие отношения к транспозиции (чаще всего гены устойчивости к антибиотикам).
Собственно транспозоны можно в свою очередь разделить на следующие группы
1) Сложные транспозоны (семейство Tn3) – короткие ИП на концах, делают в ДНК-мишени ДПП из 5 п. н. и перемещаются по механизму репликативной транспозиции.
2) Составные транспозоны (Tn5, Tn9, Tn10) с длинными ИП, представляющими собой различные IS-элементы. Длина ДПП обычно 9 п. н.
![]()
Транспозон Tn3 представляет семейство мобильных элементов с короткими ИП (35-50 п. н.), перемещающимися с помощью репликативной транспозиции и образующими ДПП из 5 п. н.
|
Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 |



