Как заработать свои первые деньги?
Слушайте больше на Подкасте Михалыча для молодежи
ИСПАРЕНИЕ — переход вещества из жидкого или твердого состояния в газообразное (пар), происходящий при любой температуре в отличие от кипения, имеющего место для данной жидкости (при данном давлении) при вполне определенной температуре. пополняется запас водяного пара в атмосфере, уменьшающийся вследствие конденсации и выпадения осадков. И. воды зависит от температуры испаряющейся поверхности, скорости ветра и влажности воздуха.
ИСПАРЯЕМОСТЬ — потенциально возможное испарение в данных метеорологических условиях с данной подстилающей поверхностью при непрерывном поступлении воды к испаряющей поверхности.
ИСПЫТАНИЕ ГРУНТОВ НА НЕСУЩУЮ СПОСОБНОСТЬ (пробной нагрузкой) — опыты для определения сопротивления сжатию грунтов в полевых условиях. И. г. н. н. с. проводят ступенями, причем измеряют осадки штампа до полного их затухания при данной ступени нагрузки. В результате получают кривую осадок грунта в зависимости от нагрузки. Полученная кривая характеризует несущую способность грунта.
ИСПЫТАНИЕ ГРУНТОВ НА РАЗЫСКАНИЕ — испытание водостойкости грунтов. Образец в виде кубика определенных размеров опускают в воду на сетке, через отверстия в которой он и проваливается по мере размоканпя. Для характеристики размокаемости грунта определяют: 1) время размокания; 2) характер распада образца; 3) влажность размокшего образца.
ИСПЫТАНИЕ ПЕНЕТРАЦИЕЙ — см. Пенетрация.
ИСТОЧНИК (родник, крышща, булак) — концентрированный естественный выход подземной воды непосредственно на земную поверхность или под водой (подводный источник). Источники подразделяются следующим образом.
1. По гидродинамическим признакам: 1) восходящие; 2) нисходящие.
2. По условиям образования и выхода на поверхность: 1) образовавшиеся вследствие уменьшения подземного потока; 2) в месте естественного окончания водоносной породы; 3) пластовые в местах эрозионного среза водоносного пласта; 4) переливающиеся; 5) плотинные, барьерные и подпорные; 6) трещинные, карстовые, жильные; 7) сбросовые; 8) перемежающиеся и сифонные.
3. По дебиту (в м3/сек): 1) > 10; 2) 1 — 10; 3) 0,1 — 1; 4) 0,01 — 0,1; 5) 0,001 — 0,01; 6) 0,0001 — 0,001; 7) 0,00001 — 0,0001; 8) < 0,00001.
4. По постоянству существования: 1) постоянные; 2) периодические; 3) перемежающиеся; 4) сезонные; 5) временные; 6) интерметирующиеся; 7) ритмические; 8) голодные н др.
5. По химизму воды: 1) пресные; 2) минеральные.
6. По температуре: 1) кипящие; 2) гипертермальные; 3) термальные; 4) субтермальные, или теплые; 5) холодные; 6) очень холодные; 7) ледяные; 8) отрицатель-нотемперату р ны е.
К
КАВЕРНОЗНОСТЬ ГОРНЫХ ПОРОД - наличие в горные породах мелких пустот (каверн). К. г. п. может быть первичная и вторичная. г. п. наблюдается в некоторых излившихся магматических породах (обусловлена особенностями застывания лавы), а также в органогенных известняках. г. п. возникает под влиянием растворяющего действия воды и особенно часто наблюдается в известняках, доломитах. г. п. имеет большое значение в гидрогеологии и инженерной геологии, так как от кавернозности зависят водопроницаемость и прочность пород.
КАДАСТР ПОДЗЕМНЫХ ВОД — систематизированный и постоянно пополняющийся свод всех данных о подземных водах, составляемый с целью учета и рационального их использования для нужд народного хозяйства. Сведения о подземных водах по типам (грунтовые, артезианские) и видам водопроявления (источники, колодцы, скважины и т. п.) наносят на учетные карточки, на специальные карты и т. п. и подвергают статистической и научной обработке. В СССР К. п. в. проводится Всесоюзным геологическим фондом, Гидрологическим институтом и различными учреждениями министерств (сельского хозяйства, здравоохранения и др.).
КАМЕННЫЙ ЛЕД — см. Ископаемый лед.
КАПЕЖ (капель) — подземные воды, поступающие в виде капель из кровли и со стенок горных выработок.
КАПЕЛЬНОЖИДКАЯ СВОБОДНАЯ ВОДА — см. Гравитационная вода.
КАПИЛЛЯРИМЕТР — прибор для определения отрицательного капиллярного давления и высоты капиллярного поднятия воды в горных породах.
КАПИЛЛЯРНАЯ ВЛАГОЕМКОСГЬ — количество воды, удерживаемое капиллярными пустотами при полном заполнении их водой в продолах зоны капиллярного поднятия. Выражается отношением веса воды к весу сухой породы (в %).
КАПИЛЛЯРНАЯ ВОДА — вода, заполняющая частично или полностью капиллярные пустоты.
КАПИЛЛЯРНАЯ ЗОНА (кайма) — зона, разделяющая зону аэрации и зопу насыщения, связанная гидравлически с последней. В К. з. поры, трещины п другие пустоты капиллярных размеров насыщены водой, удерживаемой в подвешенном состоянии капиллярными силами.
КАПИЛЛЯРНАЯ КОНДЕНСАЦИЯ - конденсация (ежи жение) пара в капиллярах. Может происходить при упругости пара, меньшей по сравнению с упругостью насыщенного пара.
КАПИЛЛЯРНОСТЬ ГОРНЫХ ПОРОД — совокупность явлений, обусловленных силами взаимодействия между молекулами жидкости и твердыми телами на их общей границе. К. г. п. характеризуется смачиванием или песма-чиванием твердых тел жидкостями, явлениями поверхностного натяжения, подъемом и опусканием жидкости в очень узких трубах — капиллярах — либо в щелях между плоскостями, образованием менисков. Последние исследования показали, что подпитие капиллярной воды происходит благодаря энергии гидратации ионов и молекул на пограничной поверхности твердой и жидкой фаз, т. е. К. г. п. имеет электрохимическую природу.
КАПИЛЛЯРНЫЕ ПОРЫ — мелкие поры, небольшие трещины, каналы, полости и другие пустоты, в которых вода и другие жидкости (нефть) могут перемещаться под действием капиллярных сил. Размер пор округлой формы в горных породах условно принимается равным 0,0002 — 1,0 мм, а размер трещин 0,0001 — 0,25 мм. Более мелкие пустоты называются субкапиллярными или суперкапил-ллрнмми.
КАПТАЖ ПОДЗЕМНЫХ ВОД - сооружение для захвата подземных вод. Простейгпим видом каптажа являются колодец и скважина. Оформление естественного выхода воды называется каптажом источника.
КАРБОНАТНАЯ ЖЁСТКОСТЬ ВОДЫ — см. Жесткость воды.
КАРСТ — совокупность явлений, связанных с выщелачиванием растворимых горных пород. К, выражается в образовании различных подземных полостей (карстовые пустоты) и отрицательных форм рельефа. Карстовые явления (карстовые формы) наблюдаются как в самих растворимых породах, так и л залегающих над ними нерастворимых породах. В последнем случае материал нерастворимых пород перемещается в нижележащие карстовые полости вследствие суффозии или обрушения. Различают поверх ностные и подземные карстовые формы. К первым относятся карры, воронки, иолья и др., а ко вторым — пещеры, каналы, расширенные за счет выветривания, трещины, каверны.
КАРСТОВЫЕ (трещинно-карстовые) ВОДЫ — подземные воды, заключенные в разнообразных карстовых полостях, образовавшихся при непременном участии процессов рас-творения. За счет этих процессов нуги движения карстовых вод обычно продолжают расширяться, что существенно отличает К. в. от подземных код, заключенных л нерастворимых породах.
КАРСТОВЫЕ ИСТОЧНИКИ - выходы карстовых иод та земную поверхность. и. называются во клюва ми (см.).
КАРСТОВЫЙ КОЛОДЕЦ — карстовый канал (полость) с вертикальными стояками, глубина которого значительно больше его поперечного сечения.
КАТИОНИРОВАНИЕ ВОДЫ - умягчение воды, т. е. спи жение ее жесткости до требуемой величины путем фильтра ц ни через материал, называемый катионитом. Иакипеоб-разующие катионы кальция и магния, содержащиеся в воде, обмениваются на ниобразуюшие накипи катионы натрия или водорода, содержащиеся в катионе. У катио-шттов, подвергнутых регенерации раствором иоватмшой соли, обменным катионом является катлпп натрия (Nа-катионит), а у катионитов, прошедших регенерацию раствором серной или соляной кислоты, — катион водорода (Н-катионит). В последнем случае из воды удаляются ионы натрия. На катионитовой водоподготовительной установке можно достичь глубокого умягчения (остаточная жесткость 0,03° — 0,05°) и снижения щелочности воды.
КАТИОННЫЙ ОБМЕН — способность катионов, содержащихся в почвах и породах (обменных катионов), обмениваться в эквивалентных количествах на катионы растворов. установил, что обменные катионы связаны с коллоидной частью почв и пород (поглотительным комплексом). Возможность и интенсивность К. о. зависят от концентрации обменных катионов в растворе и химического состава этого раствора, а также от емкости поглотительного комплекса и состава поглощенных им обменных катионов.
КИПУНЫ (гремячие ключи) — бурлящие восходящие и нисходящие холодные я теплые источники, иногда газирующие. В Казахстане такие источники называются кайнерами.
КИСЛОРОДНЫЕ ВОДЫ — воды, содержащие в растворе свободный кислород. К. в. характерны только для верхней, окислительной обстановки. В водах нижней, восстановительной обстановки кислород отсутствует; эти воды назвал бескислородными.
КИСЛОТНОСТЬ ВОДЫ — свойство, вызываемое содержанием веществ, диссоциирующих в растворе с образованием иона водорода. Например,
![]()
КИСЛЫЕ ВОДЫ — воды кислой реакции, в природе чаше всего содержащие свободную угольную, гуминовую и серную кислоты.
КИСЛЫЕ ФУМАРОЛЫ — фумаролы (см.) с температурой 400 — 600°, выделяющие НС1, S02, H2S, пары воды и возгоны хлоридов железа, магния, алюминия и марганца, а также серы и реальгара, имеющие низкий рН ( <2 — 3).
КЛАРКИ (по фам. амер. геохим. Ф. Кларка) — числа, выражающие среднее содержание (в %) данного элемента в какой-либо космической или геохимической системе (в атмосфере звезд, литосфере, интрузивном массиве, в подземных водах и т. д. в весовых или атомных процентах). Термин введен Ферсманом вместо определения «распространенность химических элементов» или «частота химических элементов». часто заменяют на «средний процент содержания». По данным современной геохимии частота химических элементов в земле и космосе определяется устойчивостью и строением их атомных ядер; миграция химических элементов, их концентрация и рассеяние во многом связаны со строением электронных оболочек атомов.
КЛАССИФИКАЦИЯ ВОД ПО ИХ ХИМИЧЕСКОМУ СОСТАВУ — группировка природных воц по общей минерализации, преобладающим компонентам или их группам, соотношению между величинами содержания ионов, наличию каких-либо специфических компонентов газового (С02, H2S, Rn и др.) или ионного состава (Fe, Ra и др.). Примерами являются следующие классификации различных авторов.
1. Классификация вод (по ) по присутствию в воде ионов Na+, Mg+2, Са+2, Сl-, SO4-2, НСО-в количестве более чем 25% (из расчета 100% мг/экв). Классификационная система (рис. 9), где по вертикальной линии нанесены возможные комбинации катионов, а по горизонтальной — анионов, предусматривает 49 возможных сочетаний ионов, которым соответствуют 40 классов природных вод. Каждый класс имеет свой номер.
2. Классификация вод (по ) по их составу на шесть классов. Первые три класса (гидрокарбонатные, сульфатные, хлоридные) выделяются по преобладанию одного из следующих ионов: НСО3-, SO4-2 и Сl-больше 12,5% же и содержанию других ионов менее 12,5% же при сумме анионов и катионов 100% же. Четвертый класс является комбинированным; к нему относятся воды, если содержание двух или трех анионов превышает 12,5% же. Каждый из этих четырех классов подразделяется в зависимости от преобладания одного из следующих катионов: Са+2, Mg+2, Na+. Пятый класс включает воды одного из предыдущих классов при содержании каких-либо специфических ионов, встречающихся в природных водах в малых количествах (Fe, Al, J и др.). Шестой класс объединяет воды, содержащие в повышенных количествах газы (С02 и H2Sj и радиоактивные вещества. 3. Классификация вод (по ), основанная на сочетании принципа деления по преобладающим анионам и катионам с делением по соотношению между ионами. Все природные воды подразделяются по преобладающему аниону (пи эквивалентам) на три класса: гидрокарбонатные и карбонатные (HСО3- + CO3-2), сульфатные (SO4-2) и хлоридные (Сl-) воды (рис. 10).

Рис. 9. Схема классификации природных вод (по ).
Каждый класс по преобладающему катиону делится на три группы: кальциевую, магниевую и натриевую. Каждая группа в свою очередь подразделяется на три тина вод, определяемых соотношением между ионами (в мг-экв). Для первою тина характерно соотношение HCO3- >Са+2 + Мg+2; для второго HCO3- <Са+2 + Mg+2 < НСО3- + S04-2; для третьего HCO3- + SO4-2 <Ca+2 + Mg+2 или, что то же самое, Cl-> Na+; для четвертого НСО3 = 0 (воды этого типа кислые), Поэтому в класс карбонатных вод этот тип не входит и его воды находятся только в сульфатном и хлоридном классах в группе Са++ и Mg++, где нет первого типа.

Рис. 10. Схема классификации природных вод по прообла-дающему аниону и соотношению между главнейшими ионами (по ).
КЛАССИФИКАЦИЯ ПОДЗЕМНЫХ ВОД — группировка типов подземных вод как природных образований, формирующихся в результате взаимодействия трех геосфер, или систем динамических физико-химических равновесий атмосферы, гидросферы и литосферы, каждая из которых имеет свои переменные параметры. Ниже приводятся примеры классификации подземных вод по различным показателям.
а) Классификация подземных вод по условиям залегания
|
Автор и год опубликования |
Порядок подразделений | |||
|
1 |
II |
III |
IV | |
|
тин, бов, 1895 |
1. Грунтовые 2.Артезианские | |||
|
, 1917 |
1. Магматические |
1.Первичные (ювенильные) 2.Возобновленные (выжатые) | ||
|
2. Эпигенные |
1. Инфильтрационные |
1. Вадозные (выше сплошного уровня вод) | ||
|
2. Фреатические (выше сплошного уровня вод) |
1. Защемленные (связанные) 2. Движущиеся | |||
|
2. Погребенные |
Пресные воды суши, морские седиментационные, вулканические | |||
|
3. Смешанные | ||||
|
, 1921 |
1. Воды в промежутках горных пород |
1. Фреатические (колодезные) | ||
|
2. Глубокие |
1. Артезианские 2. Потоки подземных вод | |||
|
2. Воды в водоносных трещинах трещиноватых пород |
1. Динамические (в породах, залегающих наклонно) 2. Статические (приуроченные к синклиналям) | |||
|
О. Е. Mейнцер, 1923 |
1 Воды зоны аэрации |
1.Воды переходного пояса |
1. Поровые 2. Трещиноватые | |
|
2. Капиллярные | ||||
|
2. Воды зоны насыщения |
1 Грунтовые (фреатиче- ские) 2. Артезианские |
1. Поровые 2. Трещинные | ||
|
3. Воды зоны пластичных горных пород |
1 . Глубинные (магматические) 2. Химически связанные | |||
|
- мунский, А. А Козырев, 1928 |
1. Свободные подземные |
1. Свободные верхние (верховодка) 2. Свободные нижние |
1. Пластовые 2. Подземные водоток | |
|
2. Напорные подземные 1 |
1 . Субартезиансние 2. Артезианские |
1. Пластовые 2. Подъемные водотоки 1. Пластовые 2. Подземные водотоки | ||
|
ков, 1928 |
Пояс выветривания Вадозные |
1. Почвенные и верховодка 2. Подпочвенные 3. Артезианские пластовые 4. Подъемные водотоки (частично минеральные) | ||
|
Пояс метаморфизации Фреатические Пояс магматический Ювенильные |
Холодные и термальные митеральные | |||
|
0. К. Ланге, 1931, 1950, 1957 |
1. Подвешенные |
Почвенные |
1 . Сезонные 2. Постоянные | |
|
2. Нисходящие |
Грунтовые |
1 Жильные (флюационные) , карстовые фильтрационные | ||
|
3. Восходящие |
Межпластовые |
Жильные (флюационные), фильтрационные | ||
|
-ренокий, 1935 |
1 . Безнапорные |
1. Грунтовые 2. Межпластовые безнапорные |
Особые виды Верховодка Полунапорные | |
|
2. Напорные |
1. Межпластовые (артезианские) 2. Трещинные |
Субартезиансние Минеральные и термальные | ||
|
Н. Н, Славя-нов, 1935 |
1 . Воды в пустотах пород |
1. Воды зоны аэрации 2. Пластовые 3. Воды в твердых горных породах |
1. Почвенная влага 2. Вода переходного пояса 3. Вода капиллярной оболочки | |
|
1 . Временные и сезонные (верховодка) 2. Свободные грунтовые 3. Напорные и артезианские 4. Трещинные 5. Карстовые 6. Жильные | ||||
|
2. Химически связан ные | ||||
|
-ренский, 1939 |
1. Почвенные, болотные, верховод ка 2. Грунтовые 3. Карстовые 4. Артезианские 5. Трещинные | |||
|
, 1946 — 1Э48 (на основе классификакации надского, 1938) |
1 . Воды земной поверхности |
1. Воды рек и временных потоков 2. Озерные 3. Болотные 4. Морские 5. Иловые воды рек, озер, болот и моря | ||
|
2. Воды земной коры |
1. Почвенные растворы 2. Грунтовые безнапорные воды, верховодка, пластовые воды 3. Воды массивных и кристаллических пород 4. Воды тектонических трещин 5. Воды подземных резервуаров 6. Восходящие воды источников 7. Восходящие воды грязевых вулканов 8. Воды нефтяных и газовых месторождений 9. Воды вулканов и гейзеров | |||
|
цев, I |
1 . Пласте тле |
1. Поропо-пластовые 2. Трещинно - пластовые 3. Карстово-пластовые |
1 . Почвенные 2. Верховодка 3. Межп ластовые а) проточные б) непроточные |
Воды особых форм 1. Надмерзлотные 2. Межмерзлотные 3. Подмерзлотные |
|
2. Трещинные |
1. Трещинные воды зоны выветривания а) потоки б) бассейны |
1 Воды современной коры выветривания а) плаотово-трещггшые б) псжрово-трещинные в) масси. чо-грещинные и др. 2. Воды погребенной зоны выветри ванин |
1 . Надмерзлотные 2. Межмерзлотные 3. Подмерзлотные Подмерзлотные | |
|
Автор и год опубликования |
Порядок подразделений | |||
|
I |
II |
Ш |
IV | |
|
2. Локально-трещинные |
1. Воды тектонических разломов 2. Воды контактов, стратигра-фического несогласия пород 3. Воды плоскостей напласто-ванпя |
1 Воды гейзеров 2. Воды грязевых вулканов 3. Воды фумарол | ||
|
3. Трещинно-карстовые |
i Воды мелкого карста а ) юной стадии б) зрелой стадии 2- Воды глубокого карста а) юной стадии б) зрелой стадии |
1. Воды подземных карстовых озер 2. Воды подземных карстовых рек | ||
|
ников, 194 8 |
1. Верховодка |
Подтипы вод в пористых породах 1 . Почвенные 2- Болотные 3. Верховодка на линзах водоупорных пород 4. Воды такыров и бугристых пеонов 5. Воды песчаных массинон и дюн |
Подтипы вод в трещиноватых породах 1. Воды коры выветривания трещиноватых пород 2. Воды верхнего этажа за-каротованных массивов 3. Воды кровли лавовых покровов |
Особые типы 1 . Воды деятельного слоя в области вечной мерзлоты 2. Дериватные воды термальных источников 3. Воды временно функционирующих фумарол |
|
2. Грунтовые |
1 . Аллювиальные 2. Делювиальные и пролю-виальные 3. Флювиогляциальные 4. Воды коренных пород |
1. Трещинные воды кровли коренных изверженных и основания лавовых покровов 2. Пластово-трещинные и тре-щинно-пластовые воды осадочных отложений 3. Карстовые воды массивов карбонатных пород (а также гипсоносных и соленосных) |
1 Надмерзлотные 2. Подмерзлотные 3. Воды повышенной температуры, обогащенные газом 4. Воды небольших фумарол и гейзеров | |
|
3. Артезианские |
1 . Воды артезианских бассейнов (в песчаных пластах) 2. Воды артезианских склонов (песчано-галеч-никовых свит предгорных районов) |
1 Воды артезианских бассейнов (в пластах, массивах и штоках трещиноватых горных пород) 2. Воды артезианских склонов (в карбонатных и туфоген-ных толщах и массивах интрузивных пород) |
1 . Подмерзлотные воды 2. Газирующие термоминеральные воды, восходящие по тектоническим разломам 3. Воды артезианских систем, осложненных внедрением изверженных масс 1 | |
б) Классификация подземных вод по степени минерализации
|
Автор и год опубликования |
Группа под |
Минерализация, г/ л |
|
, 1931 — 1936 |
1 . Пресные |
До 1,0 |
|
2. Солоноватые |
1,0-10 | |
|
3. Соленые |
10,0 — 50,0 | |
|
4. Рассолы |
Более 50,0 | |
|
, 1958 |
1. Пресные |
До 1,0 |
|
a) мягкие |
» 0,5 | |
|
б) жесткие |
» 1,0 | |
|
2. Солоноватые |
1,0 — 10,0 | |
|
а) слабосоло покатые |
1,0 — 3,0 | |
|
б) Сильносолоноватые |
3,0-10,0 | |
|
3. Соленые |
10,0 — 50,0 | |
|
а) слабосоленые |
10,0 — 25,0 | |
|
б) сильносоленые |
25,0 — 50,0 |
в) Классификация подземных вод по температуре
|
Автор и год опубликования |
Группа вод |
Температура, °С |
|
0. А. Алекин, 1953 |
1. Исключительно холодные |
Ниже 0 |
|
2. Весьма холодные.... |
0-4 | |
|
3. Холодные ......... |
4 — 20 | |
|
4. Теплые .......... |
20 — 37 | |
|
5. Горячие .......... |
37 — 42 | |
|
6. Весьма гопячис..... |
42 — 100 | |
|
7. Исключительно горячие |
Более 100 |
КЛЮЧ — см. Источник.
КОЛИ-ТИТР — показатель бактериологического загряше-ния воды, соответствующий объему исследуемой воды (в еж3), приходящемуся на одну кишечную палочку.
КОЛОДЕЗНЫЕ (фреатические) ВОДЫ — инфильтрационные, гравитационные подземные воды (грунтовые), которые могут быть извлечены из вмещающих их горных пород при помощи обычных (копаных или буровых) колодцев.
КОЛОДЕЦ — вертикальная выработка глубиной, значительно превышающей поперечное сеченые, проводимая для получения воды, нефти, рассолов и т. д. К., не содержащий воду, называют сухим. копаный (обыкновенный), абиссинский (забивной), буровой (трубчатый). Последние два по существу являются не К., а скважинами. употребляется также для характеристики естественных колодцообразных форм в карсте. У тюркских народов Ср. Алии колодец называется кудуком.
КОЛОДЕЦ ПОГЛОЩАЮЩИЙ - сооружение для приема и сброса почвепно-грунтовых или промышленных сточных вод в нижезалегающие водоносные горизонты.
КОЛЬМАТАЖ — естественное или искусственное вмы-вание глинистых и илистых частиц в поры грунта
КОМПРЕССИОННАЯ КРИВАЯ - графическое выражение зависимости пористости (или влажности) горных пород от внешнего давления, вызывающего сжатие горной породы.
КОМПРЕССИОННЫЕ ИСПЫТАНИЯ - лабораторные испытания грунтов на сжатие различными нагрузками, позволяющие выявить зависимость между величиной сжатия грунта и величиной нагрузки
КОНДЕНСАЦИОННАЯ ТЕОРИЯ -см. Теория происхождения подземных вод.
КОНДЕНСАЦИОННЫЕ РУДНИЧНЫЕ ВОДЫ - воды, периодически возникающие в горных соляных выработках и карстовых пещерах из капель («капели»), влажных и мокнущих пятен и струек на стенках шахт и камер. Такие периодические шахтные воды у горняков известны под названием «вентиляционных рассолов». Появление их объясняется конденсацией водяного пара в местах усиленного поступления вентиляционного воздуха: в соляпык выработках благодаря гигроскопичности соли и разности температур влага вентиляционного воздуха переходит в раствор и образует рассолы. Конденсационные рассолы обычно образуются в летни it период, когда насыщенный влагой теплый воздух поступает в более холодные подземные выработки.
КОНСЕКВЕНТНЫЕ ОПОЛЗНИ — оползни, у квторых скольжение происходит по какой-либо заранее имевшейся поверхности, напридтср по границе между двумя слоями или по существующей трещине.
КОНСИСТЕНЦИЯ ГЛИНИСТЫХ ГРУНТОВ — степень подвижности частиц грунта при механическом воздействии на них. Зависит от влажности грунта, степени дисперсности, минералогического состава и пр. г. г. определяет несущие свойства их и, следовательно, поведение их под сооружениями. Для глинистых грунтов характерна пластичная форма консистенции, поэтому глинистые грунты называют пластичными.
КОНСОЛИДАЦИЯ ГРУНТА — см. Степень консолидации грунта.
КОНСТИТУЦИОННАЯ ВОДА — вода в минералах, входящая в кристаллическую решетку в виде ионов ОН-, Н+, H30 + , так что сама вода образуется после полного разрушения минерала. При нагревании выделение К. в. у каждого минерала происходит в определенном интервале температур (обычно выше 300° иногда до 1000°) и сопровождается поглощением тепла. Соответствующий эндотермический эффект, получаемый на кривых нагревания, служит диагностическим признаком для распознания природы исследуемого минерала при помощи метода термического анализа. К. в. относится к группе связанных вод.
КОНТУР ПИТАНИЯ ПОДЗЕМНЫХ ВОД — линия, на которой в период эксплуатации подземных вод давление остается либо постоянным, либо изменяется по определенному закону, не зависящему от отбора воды из водоносного пласта.
КОНТУРНАЯ ВОДА — см. Краевые воды нефтеносных пластов.
КОНЦЕНТРАЦИЯ ВОДОРОДНЫХ ИОНОВ (рН) В ПОДЗЕМНЫХ ВОДАХ — содержание водородных ионов в подземных водах, выраженное в грамм-ионах на i л раствора. При 22° К. в. и. для нейтральной реакции раствора равна 1 х 10~~7 грамм-ионов на 1 л, для кислой она больше, а для щелочной меньше указанной величины. Обычно пользуются только отрицательным десятичным логарифмом этой величины, обозначая К. в. и. символом рН. Величина рН является одним из важнейших показателей характера водной среды и имеет большое значение при гидрохимических исследованиях, а также при выяснении условий образования осадков и пород. Различают среду кислую, когда рН < 7, щелочную с рН > 7 и нейтральную с рН =7.
КОЭФФИЦИЕНТ БОКОВОГО ДАВЛЕНИЯ (распора) — отношение величины бокового давления на грунт к вертикальному, вызывающему это боковое давление (коэффициент пропорциональности между вертикальным и горизонтальным напряжением). К. б. д. изменяется в следующих пределах: для песков~0,3, для суглинков — 0,5, для глин — 0,7.
КОЭФФИЦИЕНТ БОКОВОГО РАСШИРЕНИЯ — отношение между горизонтальными и вертикальными деформациями при сжатии образца грунта в условиях ограниченного бокового расширения:
![]()
где ixу — относительная линейная горизонтальная деформация образца; iz — относительная линейная вертикальная деформация образца.
Коэффициент бокового расширения зависит от плотности грунта: чем плотнее грунт, тем больше коэффициент бокового расширения.
КОЭФФИЦИЕНТ ВНУТРЕННЕГО ТРЕНИЯ — показатель сопротивления пород сдвигу, вызываемого силами трения между частицами грунта. Определяется по результату опыта на сдвиг как tg угла внутреннего трения (см.).
КОЭФФИЦИЕНТ ВОДНОГО БАЛАНСА (no A. H. Костикову) — отношение произведения слоя осадков (р, в мм) на показатель поверхностного стока (и.) к слою испарения (Е в мм) за этот же период:
![]()
К. в. б. положен в основу выделения на территории Европейской части СССР (по степени увлажнения) трех зон увлажнения: 1) избыточного; 2) неустойчивого; 3) недостаточного.
КОЭФФИЦИЕНТ ВОДНОЙ МИГРАЦИИ (по ) — миграционная способность элементов в ландшафте, выражающаяся частным от деления содержания данного элемента в минеральном остатке речной воды на его содержание в горных породах, дренируемых рекой и ее притоками:
![]()
где Кх — коэффициент водной миграции элемента х; тх — содержание элемента х в речной воде в г/л, а — сумма минеральных веществ, содержащихся в воде данной реки, в г/л; пх — среднее содержание элемента х в горных породах бассейна рассматриваемой реки в %.
Для коры выпетривания (1948 г.) дал следующие обобщенные миграционные ряды элементов.
|
Миграционные ряды элементов |
Состав рядов миграции |
Показатель порядка величины миграции |
|
1 Энергично выносимые |
Сl, (Вr, J), S |
n - 10 |
|
2. Легко выносимые |
Са, Mg, Na, К |
n |
|
3. Подвижные |
Р, Mn, SiO2 (силикатов) |
n - 10-1 |
|
4. Инертные |
Fe, Al, Ti |
n-10-2 |
|
5. Практически неподвижные |
SiO2 (кварца) |
n-10-6 |
КОЭФФИЦИЕНТ ВОДОНАСЫЩЕНИЯ — отношение величины водопоглощеиия горной породы к величине ее во-донасыщепия:
![]()
где Ks — коэффициент водопасьтщеппя, выражаемый в долях единицы; Wl — водопоглощепие (поглощение воды горной породой в обычных условиях); W2 — водопасыще нио (поглощение горной породой воды под давлением до l50 am). К. в. применяется для косвенной характеристики морозостойкости пород.
КОЭФФИЦИЕНТ ВОДООБИЛЫЮСТИ РУДНИКА (шахты) — отношение объема воды (в м3), откачиваемой из шахты за определенный период, к количеству добытого за этот же период (обычно за год) полезного ископаемого (в те). в. р. называют приток (расход) воды на единицу площади горной выработки.
КОЭФФИЦИЕНТ ВОДООТДАЧИ — см. Водоотдача.
КОЭФФИЦИЕНТ ВОДОПРОНИЦАЕМОСТИ ГОРНЫХ ПОРОД — см. Коэффициент фильтрации.
КОЭФФИЦИЕНТ ЗАКАРСТОВАННОСТИ — отношение объема всех карстовых пустот к объему горной породы, содержащей эти пустоты.
КОЭФФИЦИЕНТ КОМПРЕССИИ (уплотнения, сжимаемости) ГРУНТА — величина, показывающая степень сжимаемости при невозможности бокового расширения грунта. Коэффициент компрессии определяется по данным компрессионных испытаний по формуле
![]()
где e1 — коэффициент пористости грунта при давлении P1, е2 — коэффициент пористости грунта при давлении P2.
КОЭФФИЦИЕНТ КРЕПОСТИ ПОРОД — условная величина (f), построенная на ряде показателей (временное сопротивление на сжатие, количество породы, разрабатываемой в единицу времени, затрата энергии на выбуривание и т. д.), выражающая сопротивляемость пород проходке или разработке. В практике геологоразведочных работ по величине К. к. п. все породы подразделяются на десять категорий (по Протодьяконову).
КОЭФФИЦИЕНТ МЕТАМОРФИЗАЦИИ РАССОЛОВ — величина, характеризующая степень отклонения солевого состава природных рассолов от нормальной морской воды. Для характеристики класса озер и процесса метаморфи-зации рассола акад. II. С. Курнаков предложил использовать соотношение MgSO4/MgCl2, которое он назвал коэффициентом метаморфизм ции. Для рассолов I класса, характеризующихся наличием хлоридов натрия и магния и сульфатов натрия, магния и кальция, Км > 0. Для рассолов II класса, характеризующихся наличием хлоридов натрия, магния и кальция и сульфата кальция, т. е. почти полным отсутствием в рапе сульфатов, Км — 0. Озера с рассолами I класса преимущественно морского происхождения, а с рассолами II класса — материкового происхождения. Переход рассолов I класса в рассолы II класса, т. е. метаморфизация рассолов в направлении удаления из раствора сульфатов, совершается под влиянием карбонатных пород материка и реакции катионного обмена. При глубоких изменениях солевого состава реликтовых озер наблюдается повышение концентрации Са++ в растворе, поэтому в качестве коэффициента метаморфизации пользуются соотношением CaCl2/MgCl2. При химической классификации природных вод предложил пользоваться несколько отличающимися показателями метаморфизации, а именно соотношениями (r С1 — r Na)/r Mg и г Na/r Cl. Эти соотношения также характеризуют степень отклонения солевого состава природных вод от нормальной морской воды. Для вод моря соотношение (r Сl — r Na)/r Mg = 0,58, а соотношение r Na/r Cl = 0,87. Чем больше (г С1 — г Na)/r Mg и меньше г Na/r Cl, тем вода сильнее метаморфнзована.
КОЭФФИЦИЕНТ НАСЫЩЕНИЯ ПОРОД ВОДОЙ (степень влажности, относительная влажность) — величина, указывающая на степень заполнения водой пор в горных породах. Выражается в долях единицы или процентным отношением количества воды (обычно в еж3), находящейся в породе, к суммарному объему пустот в данном образце породы.
КОЭФФИЦИЕНТ НЕОДНОРОДНОСТИ — см. Кривая гранулометрического состава.
КОЭФФИЦИЕНТ ПЛОТНОСТИ (относительная плотность) ПЕСКА — отношение разности максимального коэффициента пористости (емакс) и естественного коэффициента пористости (е) к разности максимального и минимального (емин) коэффициентов пористости. Для определения К. п. п. применяют следующее выражение:
![]()
В зависимости от величины коэффициента плотности (D) пески подразделяют следующим образом: при 0,33>D >0 — пески рыхлые, при 0,66 > D > 0,33 — средней плотности, при 1,00 > D > 0,66 — плотные.
КОЭФФИЦИЕНТ ПОРИСТОСТИ ПОРОД (приведенная пористость) — отношение объема всех пустот (Vп) к объему твердой фазы (Fs), выражается обычно в долях единицы.
КОЭФФИЦИЕНТ ПРОПОРЦИОНАЛЬНОСТИ (по А. П. Виноградову) — числовое отношение между парами близких по своим физико-химическим свойствам элементов (соседних в ряду или группе Менделеевской системы), позволяющее делать геохимические выводы о генезисе тех геологических тел, в состав которых входят эти элементы.
КОЭФФИЦИЕНТ ПУАССОНА — отношение относительного бокового расширения образца испытуемого грунта к относительной вертикальной деформации его под действием нагрузки при одноосном сжатии. Определяется обычно по формуле
![]()
где £ — коэффициент бокового давления грунта.
КОЭФФИЦИЕНТ ПЬЕЗОПРОВОДИМОСТИ -- величина, характеризующая скорость распространения давления в водоносном или нефтеносном пласте в напорных условиях. Определяется по формуле
![]()
где К — коэффициент проницаемости в дарси; и, — вязкость жидкости в пластовых условиях в сантипуазах; т — коэффициент пористости породы в долях единицы; Рж — коэффициент сжимаемости жидкости, равный 1 am; рп — коэффициент сжимаемости породы, равный 1 am.
КОЭФФИЦИЕНТ РАЗМЯГЧАЕМОСТИ — показатель уменьшения прочности при увлажнении у некоторых полускальных горных пород (мергелей, аргиллитов и др.). К. р. представляет собой отношение пределов прочности на сжатие до насыщения водой и после. Чем ниже К. р., тем больше снижается прочность породы при насыщении водой.
КОЭФФИЦИЕНТ СДВИГА — показатель общего сопротивления горных пород сдвигу, обусловленного силами трения и силами сцепления. Определяется но опытам на сдвиг как тангенс угла сдвига.
КОЭФФИЦИЕНТ СКОРОСТИ ФИЛЬТРАЦИИ — величина, выражающая действительную скорость фильтрации в порах или трещинах горной породы при напорном градиенте, равном единице.
КОЭФФИЦИЕНТ СТРУКТУРНОЙ ПРОЧНОСТИ — показатель влияния структуры на прочность грунта. Определяется отношением временного сопротивления раздавливанию образца с естественной структурой к временному сопротивлению раздавливанию образца того же грунта с нарушенной структурой, но имеющего такие же влажность и пористость, нто и образец с ненарушенной структурой.
КОЭФФИЦИЕНТ СТРУКТУРНОЙ СЖИМАЕМОСТИ ГРУНТА — показатель, характеризующий влияние естественных структурных связей на сжимаемость в процессе высыхания горной породы. Определяется по формуле
![]()
где б — коэффициент пористости образца с естественной структурой; eу. м — коэффициент пористости монолитов на пределе усадки; eу; п — коэффициент пористости нарушенной структуры при пределе усадки.
КОЭФФИЦИЕНТ СЦЕПЛЕНИЯ — величина, характеризующая сопротивление горных пород сдвигу, обусловленное силами сцепления частиц горных пород между собой. Определяется по данным опыта на сдвиг.
КОЭФФИЦИЕНТ УРОВНЕПРОВОДНОСТИ ГОРНЫХ ПОРОД — величина, характеризующая скорость передачи подпора и изменения уровня подземных вод со свободной поверхностью. К. у. г. п. обычно выражается в м2/сутки или см2/сек и определяется по формуле
![]()
где К — коэффициент фильтрации; т — мощность водоносного пласта; ц — водоотдача, или недостаток насыщения.
КОЭФФИЦИЕНТ ФИЛЬТРАЦИИ (по Дарси) — скорость фильтрации при напорном градиенте, равном единице. К. ф. выражают обычно м/сутки или см/сек. (См. Дарси, закон.)
КОЭФФИЦИЕНТ ЭНЕРГЕТИЧЕСКОЙ УСТОЙЧИВОСТИ ГРУНТА — показатель, характеризующий влияние структурных связей на сжимаемость. Он больше или равен единице. Определяется по формуле
![]()
где е — коэффициент пористости образца с естественной структурой; ен — коэффициент образца с нарушенной структурой.
КРАЕВЫЕ (законтурные) ВОДЫ НЕФТЕНОСНЫХ ПЛАСТОВ — воды, окружающие нефть снизу в погружающейся части нефтеносного пласта; такие воды называются нижними краевыми водами. Если нефтеносный пласт обнажен, то его верхняя (головная) часть до некоторой глубины может быть заполнена водами атмосферного происхождения; эти воды называются верхними краевыми и по своему химическому составу отличаются от нижних краевых вод того же пласта.
КРЕПОСТЬ ГОРНЫХ ПОРОД — сопротивление пород воздействию внешних сил; выражается коэффициентом крепости (см.).
КРИВАЯ ГРАНУЛОМЕТРИЧЕСКОГО (механического) СОСТАВА — графическое изображение гранулометрического состава горной породы. 11о оси ординат отклады-игиот весовые проценты содержания каждой фракции, а по оси абсцисс — логарифмы размера (диаметра) частиц. Графическое изображение гранулометрического анализа показано на рис. 11.
Кривая гранулометрического состава дает возможность очень легко определять действующий (эффективный) диаметр и коэффициент неоднородности, необходимые для вычисления по эмпирическим формулам Хазена, Слих-тера и других коэффициента фильтрации песков. Действующий диаметр (d10, или dЭф) равен диаметру, которому соответствует ордината 10% на К. г. с. Коэффициент неоднородности показывает степень неоднородности песка по гранулометрическому составу и определяется отношением диаметра фракции, соответствующего ординате 60 % (deo), K действующему (эффективному) диаметру.

Рис. 11. Графическое изображение гранулометрического (механического) анализа.
а — обыкновенная кривая механического состава песка: d10 — 0,12 мм, d60=0,54 мм, f = d60/d10 = 4,5; б — логарифмическая кривая механического состава того же песка: d10=0,12 мм, d10 =050мм, f = d60/d10 = 4,2.
КРИВАЯ ДЕПРЕССИИ — см. Депрессионная кривая.
КРИВАЯ ПОДПОРА ГРУНТОВЫХ ВОД — кривая де прессии потока грунтовых вод в случае, если мощность водоносного горизонта увеличивается по направлению течения потока, что возможно при значительном наклоне водоупорного ложа в сторону течения воды. К. п. г. в. имеет вогнутую форму.
КРИВАЯ СПАДА ГРУНТОВЫХ ВОД — кривая депрессии потока грунтовых вод в случае, если мощность водоносного горизонта уменьшается по направлению течения потока, что происходит при обратном уклоне водоупорного ложа (падении ложа против течения воды), горизонтальном залегании водоупора и иногда (в случае малых уклонов водоупора) при прямом уклоне. К. с. г. в. имеет выпуклую форму.
КРИВЫЕ УПЛОТНЕНИЯ И НАБУХАНИЯ — ветви компрессионной кривой (рис. 12), соответствующие: 1) возрастанию нагрузки на грунт ступенями — кривая уплотнения (осадки); 2) разгрузке образца — кривая набухания (разгрузки). К. у. не совпадает с К. н. Это объясняется тем, что, хотя частицы грунтов (особенно глинистого) обладают упругостью, при сжатии грунта нарушается структура и возникают остаточные деформации.

Рис. 12. Компрессионные кривые.
1 — кривая уплотнения; 2 — кривая набухания.
КРИОГЕННАЯ (морозная) ТЕКСТУРА — сложение мерзлых горных пород, возникающее в процессе промерзания.
КРИОГЕННЫЕ МИНЕРАЛЫ — минералы, существующие при отрицательной температуре (лед, кристаллогидраты).
КРИОГЕННЫЕ ПРОЦЕССЫ — физические, физико-химические и физико-механические процессы при промерзании почв и горных пород.
КРИСТАЛЛИЗАЦИОННАЯ ВОДА В МИНЕРАЛАХ — вода в минералах, находящаяся в кристаллической решетке в виде молекул Н2О, занимающих определенные места (например, гипс CaS04 2Н2О, мирабилит Na2S04 10 H2О). в. при нагревании происходит в определенном интервале температуры (ниже 300° и часто ниже 100°) и сопровождается поглощением тепла. Соответствующий эндотермический эффект, фиксируемый на кривых нагревания, служит диагностическим признаком для распознавания природы исследуемого минерала при помощи метода термического анализа.
Термическим анализом устанавливается, что при нагревании выделяются воды двух типов: 1) типичная кристаллизационная вода, выделяющаяся в узком интервале температуры с полным разрушением и перестройкой кристаллической решетки минерала, причем новое обезвоженное соединение имеет большой удельный вес и показатель преломления; 2) цеолитная вода (часто расцениваемая как особый вид), выделяющаяся в широком температурном интервале (постепенно) без разрушения кристаллической решетки, причем свойства минералов постепенно изменяются с уменьшением удельного веса и показателя преломления и минерал приобретает способность впитывать воду или другие вещества.
КРИТИЧЕСКАЯ ГЛУБИНА ДО ГРУНТОВЫХ ВОД — глубина от поверхности земли, выше которой подъем зеркала минерализованных грунтовых вод может вызвать засоление слоя почвы.
КРИТИЧЕСКАЯ СКОРОСТЬ — скорость, при которой ламинарное течение жидкости переходит в турбулентное. К. с. прямо пропорциональна коэффициенту кинематической вязкости и числу Рейнольдса (см.) и обратно пропорциональна гидравлическому радиусу (см.).
КРУГОВОРОТ ВОДЫ (влагоооорот) В ПРИРОДЕ — непрерывный замкнутый процесс циркуляции воды на земном шаре, обусловленный поступлением солнечник энергии и действием силы тяжести: вода испаряется с поверхности мирового океана и с суши, водяные пары переносятся воздушными течениями, конденсируются и возвращаются в виде атмосферных осадков в океан (малый, или океанический круговорот) или на сущу, где часть их стекает через реки обратно в океан (большой круговорот). Кроме того, различают местный, или внутриматерико-вый, круговорот, при котором принимается во внимание вода, испарившаяся с поверхности суши и вновь выпавшая на сушу в виде атмосферных осадков.
КЯРИЗЫ (кягризы) — примитивно устроенные подземные, почти горизонтальные выработки для собирания и вывода на поверхность подземных вод. От водосборных галерей отличаются тем, что осью своей расположены по течению потока. Воды, выводимые К. на поверхность, называются кяризными. Термин местный, употребляемый в Ср. Азии, Азербайджане, Иране.
Л
ЛАМИНАРНОЕ ТЕЧЕНИЕ — течение жидкости (или газа) в виде отдельных, очень тонких слоев (или параллельных струп), не перемешивающихся друг с другом. Л. т. происходит только до определенной (критической) скорости (см.). При скоростях, превышаюгцих критическую, Л. т. переходит в турбулентное течение (см.).
ЛЕНИВЫЙ ТЕРМОМЕТР — термометр, медленно воспринимающий температуру окружающей среды и удерживающий ее продолжительное время вследствие того, что шарик Л. т. заделан в материал плохой теплопроводности (например, резину или пчелиный воск). Л. т. применяется в практической геотермике при измерении температуры горных пород и подземных вод в горных выработках, в скважинах и т. д.
ЛЕСНАЯ ЗОНА — зона лесов умеренного климатического пояса; расположена между зоной лесотундры и зоной лесостепи. Л. з. распространена главным образом в северном полушарии и занимает огромные пространства в Европе, Азии и Сев. Америке. В южном полушарии сплошная Л. з. отсутствует, так как материки кончаются здесь довольно далеко от Южного полюса. Л. з. характеризуется теплым летом, суровой зимой, достаточным количеством атмосферных осадков (300 — 600 мм), подзолистыми и болотными почвами.
ЛЕСС — однородная тонкозернистая, обычно неслоистая рыхлая горная порода, состоящая из мельчайших зерен кварца, вторичных глинистых минералов и углекислого кальция (27 — 90% кварца и силикатов, 4 — 20% глинозема, 6% и более углекислого кальция) с примесью слюды и других минералов. Часто содержит конкреции углекислого кальция (журавчики). Характерными особенностями типичного Л. являются пылеватый гранулометрический состав, видимая невооруженным глазом макропористость, наличие тончайших вертикальных канальцев, остающихся в Л. после отмирания стеблей травы, проса-дочность (самопроизвольное уменьшение объема породы при сильном увлажнении), анизотропные свойства в горизонтальном и вертикальном направлениях. Л. может образовывать столбчатые отдельности и высокие, хорошо сохраняющиеся вертикальные обрывы. Существует несколько теорий образования Л. — эоловая, аллювиальная, пролювиальная, делювиальная и почвенная, но ни одна из них не объясняет всех его особенностей. Вероятнее всего, что наблюдающиеся разновидности Л. образовались различными путями.
|
Из за большого объема эта статья размещена на нескольких страницах:
1 2 3 4 5 6 7 |


