Как заработать свои первые деньги?
Слушайте больше на Подкасте Михалыча для молодежи
II. ВЛИЯНИЕ СОСТОЯНИЯ ПОДЗЕМНЫХ ВОД НА ЭКОСИСТЕМУ ЧЕЛОВЕКА
В связи с глобальным загрязнением поверхностных вод централизованное водоснабжение все в большей степени ориентируется на подземные воды. Однако в условиях растущей техногенной нагрузки на окружающую среду и подземные воды подвергаются загрязнению. Техногенные компоненты обнаруживаются уже не только в верхних, слабо защищенных, водоносных горизонтах, но и в глубоких артезианских резервуарах. Загрязнение подземных вод влечет за собой целый ряд экологических и социальных последствий. Требует серьезного внимания распространение загрязняющих компонентов из подземных вод по пищевым цепям. В этом случае токсические элементы попадают в организм человека не только с питьевой водой, но и через растительную и животную пищу. Даже если население не пьет загрязненную воду, а только использует ее для приготовления пищи, водопоя скота и полива растений, это может отразиться на здоровье не только нынешнего, но и последующих поколений. Своевременный, оперативный и качественный контроль за химическим составом воды, используемой для хозяйственно-бытовых целей, является одним из условий улучшения состояния здоровья населения. Проблема качества подземных вод в настоящее время превратилась в одну из самых актуальных проблем человечества.
II.1. Значение химического состава воды при ее использовании
Пресные подземные воды используются как для питьевого водоснабжения, так и в промышленности, сельском хозяйстве, на транспорте — практически при всех видах человеческой деятельности. В зависимости от целей использования воды требования к ее химическому составу могут быть различны. К воде, применяемой в различных отраслях промышленности, предъявляются требования в соответствии со спецификой данного вида производства. Например, в сахарном производстве необходимо, чтобы вода имела минимальную минерализацию, так как присутствие любых солей затрудняет варку сахара. В пивоваренном производстве требуется отсутствие в воде CaSO4, препятствующего брожению солода. В воде, применяемой для винокуренного производства, нежелательно присутствие хлористого кальция и магния, которые задерживают развитие дрожжей. В текстильной и бумажной промышленности не допускается присутствие в воде железа, марганца и кремниевой кислоты. Производство искусственного волокна требует малой окисляемости воды (менее 2 мгО/л) и минимальной жесткости (до 0,64 мг-экв/л). Такие же требования по жесткости предъявляются к воде и в энергетической промышленности. К воде, используемой для хозяйственно-питьевого водоснабжения, предъявляемые требования можно свести к двум основным условиям: безвредности ее для организма и удовлетворительному качеству по вкусу, запаху, прозрачности и другим внешним свойствам.
Понятие "качество" для подземных вод, используемых для питьевого водоснабжения. В настоящее время качество питьевой воды, как правило, оценивается путем сравнения ее свойств и величин содержания в воде различных компонентов с их утвержденными значениями и ПДК. Если таких превышений не обнаружено, вода считается годной к употреблению для питьевых целей. Однако еще в 1964 г. проф. писал: "Вода, принимаемая внутрь в натуральном виде или в виде напитков, а также в составе пищи, с полным основанием может рассматриваться как питательное вещество в точном смысле этого понятия."[16, с.83] В связи с этим представляется, что, говоря об "экологическом качестве" питьевой воды, необходимо от однозначных оценок типа "пригодна — не пригодна" переходить к определению ее природных свойств, влияющих на здоровье человека. Наибольший интерес при этом представляют концентрации в воде элементов, активно участвующих в физиологических процессах.
Принципы и методы определения значений предельно допустимых концентраций. Нормы предельно допустимых концентраций устанавливаются по органолептическим и санитарно-токсикологическим показателям. Первая группа показателей устанавливается с учетом физических свойств воды (вкус, запах, прозрачность и т. д.), вторая — с учетом токсичности и возможности накопления в организме человека нормируемых элементов и соединений. В основе нормирования каждого вещества должно лежать: изучение его токсического воздействия; изучение его влияния на органолептические свойства воды; изучение его влияния на процессы естественного самоочищения водоемов от загрязнений органической природы.
II.2. Основные нормативные документы России и Всемирной организации здравоохранения, регламентирующие состав питьевых вод
Основными регламентирующими документами для питьевой воды в России являются ГОСТ 2874-82 "Вода питьевая. Гигиенические требования и контроль за качеством" и ГОСТ "Воды минеральные питьевые лечебные и лечебно-столовые". ГОСТ 2874-82 распространяется на воду при централизованном использовании местных источников с разводящей сетью труб. ГОСТ распространяется на минеральные питьевые лечебные и лечебно-столовые воды, которые имеют минерализацию не менее 1 г/л или содержат биологически активные микроэлементы в количестве не ниже бальнеологических норм. Предельно допустимые концентрации большинства элементов и соединений приводятся в ряде нормативных документов, основным из которых является "Санитарные нормы и предельно допустимые содержания вредных веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования (СНиП)", утвержденные Министерством здравоохранения СССР в 1988 г.
Международные нормы качества питьевой воды разрабатываются Всемирной организацией здравоохранения (ВОЗ) [48]. ВОЗ приняты рекомендуемые величины содержания компонентов, которые обеспечивают качество воды, эстетически приемлемое и не представляющее значительной опасности для здоровья потребителя. Данные величины служат основой при разработке национальных стандартов, которые при правильном применении должны обеспечивать безопасность питьевого водоснабжения. Во всех странах разрабатываются стандарты качества воды, наиболее близкие к рекомендуемым величинам. Принятые в России нормы качества питьевой воды очень близки к международным. В табл. 2 приведены показатели качества воды по ГОСТу 2874-82, Руководству по контролю качества питьевой воды ВОЗ (1994 г.) и СНиП. Представлены только некоторые показатели качества воды, упоминаемые в ГОСТе 2874-82, СНиПе или руководстве по контролю качества питьевой воды ВОЗ (1994 г.). Всего в России нормативными документами установлены ПДК для более чем 1500 различных элементов и соединений.
Таблица 2
Содержание компонентов | ГОСТ 2874-82 | СНиП, 1988 | Руководство ВОЗ, 1994 |
Микробиологические показатели | |||
Число микроорганизмов в | 100 | — | — |
Количество кишечных палочек | 3 | — | — |
Количество кишечных палочек | — | — | 0 |
Органолептические показатели | |||
рН | 6,0–9,0 | — | 6,5 - 8,5 |
Жесткость общая, мг-экв/л | 7,0 | — | — |
Цветность, град. | 20 | — | 15 |
Сухой остаток, мг/л | 1000 | — | — |
Общая минерализация, мг/л | — | — | 1000 |
Сульфаты, мг/л | 500 | — | 250 |
Хлориды, мг/л | 350 | — | 250 |
Натрий, мг/л | — | — | 200 |
Полифосфаты остаточные, мг/л | 3,5 | — | — |
Железо, мг/л | 0,3 | 0,3 | 0,3 |
Медь, мг/л | 1,0 | 1,0 | 1,0 |
Цинк, мг/л | 5,0 | 5,0 | 3,0 |
Марганец, мг/л | 0,1 | 0,1 | 0,1 |
Токсикологические показатели | |||
Алюминий, мг/л | 0,5 | 0,5 | 0,2 |
Молибден, мг/л | 0,25 | 0,25 | 0,07 |
Мышьяк, мг/л | 0,05 | 0,05 | 0,01 |
Нитраты, мг/л | 45 | 45 | 50 |
Полиакриламид, мг/л | 2,0 | — | — |
Свинец, мг/л | 0,03 | 0,03 | 0,01 |
Селен, мг/л | 0,001 | 0,01 | 0,01 |
Стронций, мг/л | 7,0 | 7,0 | — |
Фтор, мг/л | 0,7–1,5 | 1,5 | 1,5 |
Хром (VI), мг/л | — | 0,05 | 0,05 |
Хром (III), мг/л | — | 0,5 | — |
Кадмий, мг/л | — | 0,001 | 0,003 |
Ртуть, мг/л | — | 0,0005 | 0,003 |
Органические компоненты | |||
Альдрин и дильдрин, мкг/л | — | 2,0 | 0,03 |
Бензол, мкг/л | — | 500 | 10 |
Бенз(а)пирен, мкг/л | — | 0,005 | 0,7 |
Четыреххлористый углерод, мкг/л | — | 3,0 | 2,0 |
Хлордан, мкг/л | — | — | 0,2 |
Хлорбензолы, мкг/л | — | 20 | 20 |
Хлороформ, мкг/л | — | 60 | 200 |
Хлорфенолы, мкг/л | — | 1,0 | 0,1 |
ДДТ, мкг/л | — | 100 | 2,0 |
1,2-дихлорэтан, мкг/л | — | 20 | 30 |
1,1-дихлорэтилен, мкг/л | — | 0,6 | 0,3 |
Гептахлор, мкг/л | — | 50 | 0,03 |
Гексахлорбензол, мкг/л | — | 50 | 0,1 |
Гамма-ГХЦГ, мкг/л | — | 4,0 | 3,0 |
Метоксихлор, мкг/л | — | 100 | 20 |
Пентахлорфенол, мкг/л | — | 10 | 9,0 |
Тетрахлорэтилен, мкг/л | — | — | 10 |
Трихлорэтилен, мкг/л | — | 60 | 70 |
2,4-6-трихлорфенол, мкг/л | — | 4,0 | 200 |
Данные по предельно допустимым концентрациям различных компонентов в воде приводятся в различных справочных изданиях. Сведения о физико-химических свойствах, получении и применении, а также ПДК для элементов 1-VIII групп, углеводородов и их галогенопроизводных и радиоактивных элементов приведены в четырехтомнике "Вредные химические вещества"[4]. Химическая классификация и некоторые физические и химико-аналитические свойства около 1000 нормируемых в водах органических соединений представлены в справочнике "Основные свойства нормируемых в водах органических соединений" [39]. Там же даны структурные формулы этих соединений, их ПДК, лимитирующие признаки вредности (необходимы при выборе наиболее опасных веществ для контроля и учитываются при одновременном содержании вредных веществ), молекулярные массы, агрегатное состояние, некоторые физические константы, растворимость, устойчивость, область применения.
В настоящее время является актуальным совершенствование системы контроля качества питьевой воды (приоритетность методов анализа, периодичность исследований, методика отбора проб воды и др.) [3]. Самостоятельной задачей является уточнение величин гигиенических стандартов по ряду показателей, таких как цветность, содержание хлоридов, сульфатов, алюминия, свинца, селена, по которым имеются расхождения между ГОСТом и "Рекомендациями" ВОЗ. Также необходима разработка отдельного Государственного стандарта на качество питьевой опресненной воды, так как опреснение соленых и солоноватых вод является очень важной гигиенической проблемой.
II.3 Экзогенные гипер - и гипомикроэлементозы
Медики выделяют целую группу заболеваний, связанных с повышенным или пониженным содержанием различных микроэлементов в среде обитания организмов, в первую очередь в воде и геологической среде в целом. Это так называемые экзогенные первичные гипер - и гипомикроэлементозы [1]. Накопление химических элементов во внутренних органах человека приводит к развитию различных заболеваний. Из элементов больше всего в организме человека накапливаются кадмий, хром — в почках, медь — в желудочно-кишечном тракте, ртуть — в центральной нервной системе, цинк — в желудке, двигательном аппарате, мышьяк — в почках, печени, легких, сердечно-сосудистой системе, селен — в кишечнике, печени, почках, бериллий — в органах кроветворения, нервной системе.
Избыток солей кальция в воде приводит к нарушению обменных процессов в организме, атеросклерозу, мочекаменной болезни. Избыток фтора в питьевой воде приводит к такому заболеванию, как эндемический флюороз, при котором поражаются печень, почки и центральная нервная система. А такая распространенная болезнь, как кариес, является следствием концентрации фтора в воде ниже оптимальной. Механизм действия фтора на организм обусловлен образованием его комплексных соединений с кальцием, магнием и другими элементами — активаторами ферментных систем. Угнетающее действие фтора на ферменты приводит к тому, что он может быть “конкурентом номер один” в синтезе гормонов щитовидной железы и, следовательно, влиять на ее функцию. В результате исследований о влиянии фтора при комплексном поступлении в организм получено, что безопасное комплексное суточное поступление фтора в организм человека составляет около 4 мг/сут [35].
Известно также, что хлоридно-сульфатные воды приводят к нарушениям в системе пищеварения, различным гинекологическим заболеваниям.
Под воздействием высоких концентраций нитратов развивается такая болезнь, как водно-нитратная метгемогло-бинемия. Нитраты, попадая в организм человека, под влиянием микрофлоры кишечника образуют нитриты, которые, в свою очередь, приводят к образованию в крови метгемоглобина, в результате чего снижается снабжение тканей кислородом. Нитриты и нитраты в организме человека могут трансформироваться в канцерогенные нитрозоамины. Содержание нитратов в питьевой воде не должно превышать 45 мг/л [5].
В последнее время большое внимание уделяется изучению влияния веществ, появляющихся в воде в результате ее хлорирования. К таким соединениям относятся тригалометаны — производные метана, в молекулах которого часть атомов водорода замещена атомами галогенов: Cl, Br, I. Тригалометаны обладают большой биологической активностью и оказывают канцерогенное действие на организм человека. Их количество достигает 100 мкг/л . Основным из них является хлороформ, наряду с которым обнаруживается еще до 40 различных веществ. Количество и разнообразие тригалометанов зависят от химической природы первичных органических соединений, находящихся в хлорируемой воде, количества использованного при хлорировании воды активного хлора, времени его контакта с водой, pH воды, ее температуры и других факторов. Эти соединения являются причиной злокачественных, обменных, аллергических, ревматических и других неинфекционных заболеваний.
Биологически активные элементы. При оценке качества воды в первую очередь необходимо обращать внимание на концентрации биологически активных (эссенциальных) элементов, которые участвуют во всех физиологических процессах. к таким, биологически активным, элементам отнес K, Na, Ca, Mg, Li, Rb, Fe, Cu, Zn, Ga, Co, Ni, Mn, Mo, Cd, Cr, Ti, V, Sr, Ba, Cl, I, F, Se, As [20]. с соавт. в группу наиболее жизненно необходимых микроэлементов включают Li, Fe, Cu, Zn, Co, Ni, Mn, Mo, Cr, V, I, F, Se, As, Si, а кандидатами Cd, Pb, Sn и Rb [1]. [35] отмечает, что в организме человека содержатся все химические элементы Периодической системы, биологическая роль многих из которых еще не изучена, например, Li, Cs, Sc, Al, Ba, B, Rb, Be, Ag, Ga, Ge, Hg, Pl, Bi, Ti, Sb, U, Te, Ra и многих других. Однако отсутствие такой информации еще не означает их биологическую инертность. Замещая биологически значимые элементы в различных важных в физиологическом отношении соединениях (белки, в том числе ферменты, нуклеиновые кислоты, гормоны, витамины) и структурных образованиях (оболочки клеток, матрица костной ткани и др.), они могут существенно влиять на протекание биохимических и физиологических процессов и лежать в основе многих болезней, вызывая нарушения первоначально на молекулярном и субмолекулярном уровнях.
Отрицательное влияние малых концентраций эссенциальных элементов в питьевой воде. Повышенное содержание в пищевом рационе любого элемента вызывает различные отрицательные последствия. Однако низкие содержания целого ряда элементов также представляют опасность для организма человека [53].
Среди наиболее распространенных заболеваний, связанных с низким содержанием микроэлементов в питьевой воде, можно назвать эндемический зоб (низкое содержание йода), кариес (низкое содержание фтора), железодефицитные анемии (низкое содержание железа и меди). В качестве примера можно привести результаты работы советско-финской экспедиции, которая обнаружила, что из-за низкого содержания в воде и почве селена населению ряда районов Читинской области угрожает селенодефицитная кардиопатия - болезнь Кешана. Среди макрокомпонентного состава воды особенно негативное влияние на организм человека оказывает низкое содержание в питьевой воде кальция и магния. Так, например, результаты санитарно-эпидемиологических обследований населения, проводимых по программам ВОЗ, показывают, что низкое содержание в питьевой воде Ca и Mg приводит к увеличению числа сердечно-сосудистых заболеваний [36]. В результате исследований в Англии было выбрано шесть городов с самой жесткой и шесть с самой мягкой питьевой водой. Смертность от сердечно-сосудистых заболеваний в городах с жесткой водой оказалась ниже нормы, в то время как в городах с мягкой водой — выше. Более того, у населения, живущего в городах с жесткой водой, параметры деятельности сердечно-сосудистой системы лучше: ниже общее кровяное давление, ниже частота сокращений сердца в покое, а также содержания холестерина в крови. Курение, социально-экономические и другие факторы не влияли на эти корреляции. В Финляндии более высокая смертность от сердечно-сосудистых заболеваний, повышенное кровяное давление и содержание холестерина в крови в восточной части страны по сравнению с западной, по всей видимости, также связаны с использованием мягкой воды, так как другие параметры (диета, физическая нагрузка и т. д.) населения этих групп практически не различаются.
В последнее время эти данные получили клиническое подтверждение. Группой исследователей под руководством [23] было установлено, что 60–80% суточной потребности Ca и Mg у человека удовлетворяется за счет пищи. Но значение Ca и Mg в суточном рационе можно оценить, если учесть, что требования ВОЗ к содержанию этих катионов в воде для Ca составляют 80–100 мг/л (около 120–150 мг в сутки), а для Mg — до 150 мг/л (около 200 мг в сутки) при общей суточной потребности, например, Ca, равной 500 мг. Показано, что Ca и Mg из воды всасываются в кишечнике полностью, а из продуктов, в которых он связан с белком, — только на 1/3.
Уровень Ca в клетке является универсальным фактором регуляции всех клеточных функций независимо от типа клеток. Недостаток Ca в воде сказывается на увеличении всасывания и токсического действия тяжелых металлов (Cd, Hg, Pb, Al и др.). Тяжелые металлы конкурируют с Ca в клетке, так как используют его метаболические пути для проникновения в организм и замещают ионы Ca в важнейших регуляторных белках, нарушая таким образом их нормальную работу.
К настоящему времени можно с уверенностью утверждать, что мягкая питьевая вода, характерная для северных регионов планеты, с низким содержанием жизненно важных для организма двухвалентных катионов (Ca и Mg) является существенным экологическим фактором риска сердечно-сосудистой патологии и других широко распространенных Ca-Mg-зависимых региональных заболеваний.
Таким образом, при разработке требований к качеству воды, используемой для питьевых целей, необходимо нормировать и нижний предел содержания целого ряда компонентов.
При более детальном анализе влияния содержащихся в воде биологически активных элементов на здоровье человека необходимо также учитывать форму их нахождения в растворе. Так, фтор в ионном виде, будучи токсичным для человека при концентрациях более 1,5 мг/л, перестает быть токсичным, находясь в растворе в виде комплексного соединения BF4-. Экспериментально установлено, что введение в организм человека значительного количества фтора в виде указанного комплексного соединения исключает опасность заболевания человека флюорозом, так как, будучи устойчивым в кислых средах, это соединение не усваивается организмом. Поэтому, говоря об оптимальных концентрациях фтора, следует учитывать возможность его нахождения в воде в виде комплексных соединений, поскольку и положительное воздействие на человека в определенных концентрациях оказывает именно ион F–.
|
Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 |


