На правах рукописи

ЛОГУНОВА МАРИЯ АЛЕКСАНДРОВНА

ПРИМЕНЕНИЕ ФОРМООБРАЗУЮЩИХ ЭЛЕМЕНТОВ

В МОНОЛИТНЫХ ЖЕЛЕЗОБЕТОННЫХ КАРКАСАХ МНОГОЭТАЖНЫХ ЗДАНИЙ

Специальность 05.23.01 – Строительные конструкции, здания и сооружения

АВТОРЕФЕРАТ

диссертации на соискание

ученой степени кандидата технических наук

Новосибирск - 2012

Работа выполнена на кафедре железобетонных конструкций федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Новосибирский государственный архитектурно-строительный университет (Сибстрин)»

Научный руководитель

Официальные оппоненты

Ведущая организация

-

-

-

-

доктор технических наук, профессор,

доктор технических наук, профессор,

НИИЖБ, заведующий лабораторией арматуры

доктор технических наук, профессор, ТГАСУ, профессор кафедры ЖБК

Сибирский зональный научно-исследовательский и проектный институт, г. Новосибирск

Защита состоится «27» ноября 2012 года в 14 часов 00 минут на заседании диссертационного совета ДМ 212.171.01 в ФГБОУ ВПО «Новосибирский государственный архитектурно-строительный университет (Сибстрин)» по адресу:

, ауд. 239

Факс: (3; e-mail: *****@***ru

С диссертацией можно ознакомиться в библиотеке ФГБОУ ВПО «Новосибирский государственный архитектурно-строительный университет (Сибстрин)»

Автореферат разослан « 29 » сентября 2012 года

 

Ученый секретарь

диссертационного совета

к. т.н., профессор

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В настоящее время в Российской Федерации увеличивается объем каркасного монолитного домостроения. Дальнейший рост его в Сибирском регионе сдерживается повышенной трудоемкостью работ, связанной с климатическими особенностями территории. Для крупных мегаполисов, таких как Новосибирск, необратимым становится увеличение этажности жилых и гражданских зданий, что выдвигает повышенные требования к надежности и долговечности таких зданий. Объем строительства жилья ежегодно растет и стремится достигнуть известного международного стандарта – строительства 1 м2 в год на 1 жителя города. Показатель годового объема монолитного домостроения в пересчете на одного жителя составляет 0,8…2 м3 за рубежом и 0,2 м3 – в России. Такая тенденция обуславливает необходимость высокотехнологичного и экономичного проектирования с одновременной возможностью гибкого изменения объемно-планировочных решений при строительстве и реконструкции зданий. Традиционные технологии часто не выдерживают конкуренции из-за трудоемкости возведения монолитных зданий в Сибири – либо растет себестоимость, либо снижается качество работ.

Важнейшим аспектом продвижения на рынок монолитных каркасных зданий из железобетона являются исследования, как в области формообразования, так и в области совершенствования методики расчета.

Методики расчета таких зданий интенсивно развиваются. Благодаря возросшим вычислительным мощностям ЭВМ часть современных программных комплексов уже позволяет учесть специфику последовательности возведения здания, физическую и геометрическую нелинейности, включая реологические свойства материалов и грунтов основания. Однако учет физической и геометрической нелинейности, а также существенной неоднородности бетона, дискретного армирования и дискретного трещинообразования растянутой зоны не всегда позволяет получить результат расчета с помощью современных программных средств, адекватный физическому состоянию.

На кафедре железобетонных конструкций НГАСУ (Сибстрин) разработаны основные положения энергетической теории сопротивления железобетона и создан аппарат сквозного расчета железобетонных элементов. Эти исследования позволили выдвинуть ряд новых предложений, касающихся перераспределения усилий в элементах монолитного железобетонного каркаса в зависимости от характера и места приложения нагрузки, а также позволяющих существенно повысить жесткость и трещиностойкость железобетонных конструктивных систем.

С 01.07.2010 вступил в силу Федеральный закон № 000 «Технический регламент о безопасности зданий и сооружений», содержащий требование об учете в расчетных моделях зданий возможных отклонений геометрических параметров от их номинальных значений. Между тем ни в нормативных документах, ни в работах исследователей РФ не разработаны методики учета в расчетных моделях железобетонных монолитных зданий возможных геометрических отклонений, а в методиках расчета отдельных элементов влияние геометрических несовершенств учитывается весьма приближенно. В работах как российских, так и зарубежных исследователей, посвященных мониторингу зданий, отмечается существенное влияние отклонений на напряженно-деформированное состояние зданий. Бороться с этим фактором можно не только расчетными, но и конструктивными мерами. В настоящей работе предлагается решение ряда вышеобозначенных задач новыми методами, позволяющими в значительной степени уменьшить начальные поэтажные горизонтальные отклонения колонн при возведении, снизить материалоемкость каркасной системы и увеличить скорость возведения. Это повысит актуальность применения железобетонных монолитных каркасов при строительстве многоэтажных зданий. Экспериментальным и теоретическим исследованиям деформирования элементов монолитного каркаса с учетом новых конструктивно-расчетных предложений посвящена настоящая работа.

Целью диссертационного исследования является разработка новой конструктивной формы - железобетонного безригельного каркаса с использованием формообразующего остова и внутренних обойм в вертикальных элементах.

Для достижения поставленной цели сформулированы следующие задачи:

1. разработать общий подход (концепцию) к применению формообразующего металлического остова в элементах конструктивной системы безригельного (ригельного) монолитного каркаса многоэтажных зданий;

2. провести физический эксперимент для оценки эффективности применения формообразующего остова в качестве жесткой арматуры и внутренней обоймы колонн;

3. сравнить результаты численного моделирования вариантов узлов сопряжения колонны, содержащей металлический остов, с плитой перекрытия;

4. оценить влияние формообразующего каркаса на узел сопряжения колонн с монолитным перекрытием;

5. определить предельные деформации элементов с внутренней обоймой;

6. определить влияние формообразующего каркаса на точность возведения монолитных многоэтажных зданий;

7. сделать предложение по замене линейных пластических шарниров заранее организованными трещинами в методе расчета по предельному равновесию;

8. разработать инженерную методику расчета железобетонных элементов с внутренней обоймой.

Объектом исследования являются элементы каркасных монолитных железобетонных зданий с применением формообразующего остова [9].

Предмет исследования – особенности напряженно-деформированного состояния формообразующего каркаса и его элементов.

Методологической, теоретической и эмпирической базой послужили труды отечественных и зарубежных авторов, изучающих особенности деформирования каркасных зданий, а также результаты исследований, проводимых на кафедре железобетонных конструкций НГАСУ (Сибстрин).

Научная новизна диссертационной работы

1. Разработана новая конструктивная система железобетонного каркаса [9], в котором жесткая арматура колонн выполняет роль формообразующего остова, одновременно являясь внутренней обоймой.

2. Доказано, что внутренняя обойма в железобетонных колоннах увеличивает максимальные деформации перед разрушением по сравнению с колоннами без обоймы.

3. Предложенная конструктивная система позволяет использовать в железобетонных колоннах арматуру класса А600С с ее расчетным сопротивлением.

4. Применение разработанного каркаса практически полностью исключает вероятность возникновения дополнительных усилий в элементах каркаса, связанных с геометрическими несовершенствами колонн, возникающими на стадии возведения.

5. Доказано, что использование организованных трещин в изгибаемых бетонных и железобетонных элементах повышает жесткость и трещиностойкость конструкции.

6. Предложены варианты ориентации организованных трещин для неразрезных плит в безригельном каркасе.

Практическая ценность работы

1. Разработанная каркасная система повысит качество возведения многоэтажных монолитных каркасных зданий и позволит снизить общий расход стали по сравнению с известными аналогами.

2. Установлено, что применение формообразующего металлического каркаса в монолитных зданиях позволяет существенно снизить начальные горизонтальные отклонения колонн в стадии возведения.

3. Предложена инженерная методика расчета железобетонных элементов с внутренней обоймой.

4. Предельные деформации сжатых элементов с внутренней обоймой позволяют рекомендовать применение арматурной стали А500С, А600С в таких конструкциях с повышенным значением величины расчетного сопротивления.

Достоверность результатов обусловлена:

1. использованием фактических экспериментальных данных как основы для предлагаемых теоретических положений;

2. использованием физически адекватных гипотез и методик расчета монолитных железобетонных каркасных зданий.

На защиту выносятся:

1. новый принцип формообразования конструктивной системы сталежелезобетонного монолитного каркаса с применением металлического остова [9];

2. результаты численного анализа моделей узлов сопряжения колонны, содержащей металлический остов, с плитой перекрытия;

3. инженерная методика расчета сжатых элементов с внутренней обоймой с анализом эффекта по несущей способности;

4. результаты физического эксперимента по исследованию деформирования сжатых элементов с различными вариантами косвенного армирования, обеспечивающими эффект внутренней обоймы;

5. результаты физического эксперимента по исследованию деформирования модели каркаса с внутренней обоймой;

6. результаты физического эксперимента по исследованию деформирования модели каркаса с заранее организованными трещинами;

7. возможность использования в железобетонных колоннах арматуры А600С с ее расчетным сопротивлением;

8. снижение расхода стали в связи с отсутствием дополнительных усилий в элементах каркаса, связанных с геометрическими несовершенствами колонн, возникающими на стадии возведения.

Апробация и внедрение результатов работы

Основные положения диссертационной работы были представлены на III Всероссийской научно-технической конференции, посвященной 80-летию НГАСУ (Сибстрин) (г. Новосибирск, 6-8 апреля 2010 г.), на Восьмой всеукраинской научно-технической конференции "Строительство в сейсмических районах Украины" (г. Ялта, 14-17 сентября 2010 г.), на IV Всероссийской научно-технической конференции «Актуальные проблемы в строительстве» (г. Новосибирск, НГАСУ (Сибстрин) 5-7 апреля 2011 г.), на Международном молодежном инновационном форуме «ИНТЕРРА-2011» (г. Новосибирск, площадка НГАСУ (Сибстрин) 22-24 сентября 2011 г.), на региональной конференции «Градостроительство и сейсмобезопасность» (выставка «Стройсиб-2011» г. Новосибирск), на III-м Международном симпозиуме «Проблемы современного бетона и железобетона» (г. Минск, 9-11 ноября 2011 г.), на II Международной заочной научно-практической конференции «Актуальные проблемы науки» (г. Тамбов, 27 сентября 2011 г.), на V Всероссийской научно-технической конференции «Актуальные вопросы строительства» (г. Новосибирск, НГАСУ (Сибстрин) 10-12 апреля 2012 г.), на Международной научно-методической конференции «Железобетонные конструкции: исследования, проектирование, методика преподавания» (г. Москва, ФГБОУ ВПО «МГСУ», 4-5 апреля 2012 г.), на Научно-практической конференции «Практика применения современных железобетонных конструкций в гражданском строительстве» (г. Новосибирск, выставка «СТРОЙСИБ-2012», 1 февраля 2012 г.). На V Сибирской венчурной ярмарке 9-10 июня 2011 г. представлен проект «Сталежелезобетонный каркас зданий», на выставке «СТРОЙСИБ-2012» на площадке НГАСУ (Сибстрин) 31 января - 3 февраля 2012г. представлен экспонат «Сталежелезобетонный каркас зданий».

В гг. получен муниципальный грант мэрии г. Новосибирска за научную работу по теме «Сборно-монолитный сталежелезобетонный каркас для жилищного и гражданского строительства»;

-грант по теме: «Прочность и устойчивость сжатых бетонных элементов с внутренней обоймой» (п. 2.3.13 темплана НИР РААСН).

Каркас использован при опытном проектировании и строительстве 12-этажного жилого дома по ул. Урицкого, 19 в г. Новосибирске, а также при проектировании здания Центра коллективного пользования УК «Биотехнопарк» в РП «Кольцово» Новосибирской области.

Публикации. По теме диссертации опубликовано 9 работ, 4 из них в рецензируемых журналах из перечня ВАК, 1 патент.

Личный вклад автора. Представленные в диссертации результаты получены лично автором или при его непосредственном участии; в совместных публикациях от 33% до 50% результатов исследований принадлежит автору.

Структура и объем работы. Диссертация состоит из введения, четырех глав, основных выводов и рекомендаций, библиографического списка, включающего 148 наименований, и содержит 169 страниц, в том числе 87 рисунков, 18 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность темы, поставлена цель и сформулированы задачи исследования, показана научная новизна и практическая ценность, дана общая характеристика работы.

В первой главе проведен анализ существующих типов каркасных систем. В прошлом основное строительство выполнялось в сборных железобетонных конструкциях, однако жилые здания строили преимущественно в кирпичном и панельном исполнении. Сборные железобетонные каркасы применяли в гражданском строительстве – это, прежде всего, серия ИИ-04 и 1.020. Монолитные каркасные здания, возводимые в настоящее время, имеют, как правило, сетку колонн (колонн-диафрагм) аналогичную вариантам сборного домостроения, либо стандартную 6х6, 6х7,2, 6х9 и т. п. В главе приведены исследования различных авторов в области применения жесткой арматуры в сжатых элементах, а также уголковых обойм, широко используемых для усиления. В текущий период наиболее распространенными каркасными зданиями для жилищного строительства являются каркасы «Куб-2,5», «Чебоксарская серия» и «Сочи», которые относят к сборно-монолитным.

В сжатых элементах достаточно широко используется косвенная арматура в виде сеток и спиралей, которая повышает устойчивость вертикального сжатого элемента к продольному растрескиванию и тем самым повышает его несущую способность и позволяет применять арматуру с большим расчетным сопротивлением сжатию.

В 1902 году А. Консидер испытал на осевое сжатие бетонные образцы, находящиеся под действием бокового гидростатического давления. Им было предложено поперечное (косвенное) армирование бетона и проведены первые испытания бетонных цилиндров в спиральной обойме. В исследованиях К. Баха, Ф. Рихарда, А. Брандцаега, Р. Брауна, Р. Залигера, О. Графа, В. Вейбулла, , и многих других ученых было установлено, что на эффективность работы спирали влияют различные факторы: прочность бетона, его состав и консистенция, диаметр и класс спиральной арматуры, расстояние между витками спирали.

В работе выделены два случая разрушения сеточно армированных элементов. Исследования , , легли в основу рекомендаций по расчету и конструированию сеточно армированных концевых участков колонн.

В этой области известны работы A. П. Васильева, , B. И. Довгалюка, , и других исследователей.

Совершенствование общих физических моделей деформирования железобетона с трещинами и развитие на их основе методов расчета железобетонных конструкций рассматривались , , , и др.

В конце первой главы приводится основная характеристика предлагаемого в настоящей работе сталежелезобетонного каркаса (рис. 1), отличающегося от прочих аналогов тем, что при его разработке использован новый принцип формообразования. Металлический остов, являющийся основой формообразующего каркаса, представляет собой жесткую арматуру в теле колонн, одновременно выполняющей функции внутренней обоймы. Фактически этот каркас возводится в два этапа (по аналогии со сборно-монолитным возведением здания). На первом этапе монтируется формообразующий стальной остов, собираемый из уголков 50х5 мм; он образует форму каркаса будущего здания. Горизонтальные обвязочные элементы играют двойную роль – на первом этапе возведения они представляют собой пространственные металлические ригели, которые на болтах объединяются с колоннами [9]. После установки дополнительной арматуры и монтажа опалубки ригели служат опорным элементом для опалубочных щитов перекрытия. Начинается возведение здания и после набора бетоном необходимой прочности, балки-ригели снимаются и переставляются на вновь монтируемые участки.

_185013.jpg

Рис.1. Схема формообразующего каркаса со съемными ригелями

1 – колонны формообразующего каркаса; 2 – съемные ригели;

3 –опалубка; 4 – монолитная плита перекрытия;

5 – колонна после обетонирования

В другом варианте обвязочные балки остаются в теле бетона плиты как жесткая арматура и играют роль внутренних балок. В первом случае расход стали от формообразующего каркаса на 1 м2 при ячейке 6х7,5 составляет 4,5 кг, во втором – 8 кг.

В работах , и результаты экспериментальных исследований узлов монолитного ригельно-стоечного каркаса показали наличие диагональных трещин в сопряжении колонны и ригеля, с последующим раздроблением сжатого бетона колонны и срезом. Предлагаемое в настоящей работе армирование колонн стальными элементами (обоймой) обеспечит прочность и трещиностойкость таких узлов.

Таким образом, в настоящей работе разработан вариант каркаса, в котором монолитное многоэтажное здание имеет формообразующий металлический остов, выполняющий роль жесткой арматуры и внутренней обоймы, предохраняющий от геометрических несовершенств, позволяющий использовать высокопрочную арматуру с повышенным значением прочности на сжатие.

Во второй главе проведены теоретические исследования и представлены инженерные методы расчета деформирования железобетонных колонн с внутренней обоймой, а также расчетная модель для определения изгибающих моментов в колонне многоэтажной рамы, имеющей отклонения от проектного положения. Выполнен численный анализ моделей различных вариантов узла сопряжения колонны, содержащей внутренний металлический каркас, с плитой перекрытия (рис. 2).

В диссертации приведен вариант расчета железобетонных колонн с внутренней обоймой для случая центрального сжатия (рисунок 3а, б). В результате определяется необходимый шаг и диаметр поперечных стержней обоймы, а также требуемое сечение уголков и дополнительной стержневой арматуры при заданной нагрузке, сечении колонны и классе бетона.

без обоймы.jpg до пл.jpg наскв.jpg

Рис. 2. Модели сопряжения перекрытий и колонн с различными вариантами внутренней обоймы и распределение касательных напряжений в них

а)

б)

Рисунок1.jpg

Рисунок2.jpg

Рис. 3. Колонна с внутренней обоймой

а) конструктивная схема

1 – уголки внутренней обоймы; 2 – поперечные стержни внутренней обоймы; 3 – дополнительная рабочая арматура; 4 – железобетонное ядро;

б) расчетная схема

С использованием вероятностного подхода в работе приведено решение задачи определения изгибающих моментов в колонне многоэтажной рамы с узлами, имеющими отклонения от проектного положения, где моменты возникают как дополнительные к вычисляемым без учета геометрических несовершенств.

При одинаковых статистических свойствах относительных поэтажных отклонений, наибольшими получаются стандарты и, следовательно, разбросы (доверительные интервалы) значений изгибающих моментов в колоннах нижних этажей [2].

Для снижения влияния геометрических несовершенств, возникающих при возведении монолитных зданий, в настоящем исследовании предлагается выполнять нижние этажи в виде сталежелезобетонного каркаса.

Для формирования единообразного подхода к методам расчета, при проектировании плит перекрытий использован метод предельного равновесия проф. .

При безусловных достоинствах метода, следует отметить факт неединственности решения. На кафедре железобетонных конструкций НГАСУ (Сибстрин) разработана энергетическая теория сопротивления железобетона (, ) [7]. В рамках этой теории решена задача перехода сечения из состояния сплошного сечения к состоянию сечения с трещиной, доказано наличие динамической составляющей.

Приняв за аналог мгновенно появившейся трещины, деформирование балки с мгновенно появившемся грузом, получаем удвоенное значение динамического прогиба по сравнению со статическим.

В соответствии с постулатом профессора о возможности управления свойствами железобетона через организованные трещины и результатами исследований [1, 7] в области пластических шарниров в теории предельного равновесия введены организованные трещины в процессе изготовления конструкций.

Введение в систему перекрытий заранее организованных трещин позволяет получить замкнутую систему уравнений.

В диссертации приведена полученная система уравнений и пути ее решения.

В третьей главе выполнены экспериментальные исследования.

В железобетонных балках с намеченными трещинами развитие последних происходит без скачков, то есть создается более плавный характер деформирования. С целью проверки подобного эффекта для неармированных балок был проведен модельный эксперимент, в ходе которого изготовили и испытали 4 серии бетонных балок, в каждой серии по 3 балки [1]. Размеры бетонных балок 1200×70×140 мм, класс бетона В15.

Балки серии № 1 изготовили без организованных трещин. Балки остальных серий имели организованные трещины: варьировались их число и высота. Организованные трещины образованы установкой мягкой алюминиевой пластины толщиной 0,5 мм. В диссертации приведена методика проведения эксперимента, схемы нагружения, графики изменения деформаций в сжатой зоне и другие характеристики проведенного исследования.

По результатам испытаний построены графики изменения прогибов в зависимости от нагрузки (рис. 4). Как видно из приведенных графиков, прогибы балок с организованными трещинами в 1,5 – 3 раза меньше, чем у балок без организованных трещин.

Рисунок4.jpg

Рис. 4. Графики зависимости «прогиб-нагрузка» бетонных балок четырех серий

Для качественной оценки деформирования сопряжения колонны с внутренней обоймой и плиты разработана методика и испытаны узлы сопряжения «колонна-плита» с разными вариантами армирования (рис. 5, 6)

Рис. 5. Типы моделей для испытания сопряжения «колонна-плита»

Разрушение плиты при испытании всех четырех типов образцов произошло при близких значениях нагрузки.

В целях исследования напряженно-деформированного состояния колонны с внутренней обоймой был проведен эксперимент с железобетонными образцами в виде колонн высотой 1 м сечением 250х220 мм с внутренними обоймами разных типов (рис. 7, 8).

Рис. 6. Испытание модели узла сопряжения «колонна-плита»

Рис. 7. Испытание образцов с внутренней обоймой

Рис. 8. Образцы разных типов: с внутренней обоймой и без обоймы

Относительные средние продольные деформации для всех образцов показаны на рисунке 9.

Средние предельные относительные продольные деформации для образцов с обоймой на 13% - 68% выше аналогичных для образцов без обоймы, а несущая способность образцов с обоймой выше на 8-25%. Учитывая, что условия закрепления отличны от деформирования элементов в составе безбалочного железобетонного каркаса, уместно сделать прогноз, что фактические деформации и несущая способность железобетонных колонн с внутренней обоймой превысят полученные величины не менее, чем в 1,5-2 раза.

Рис. 9. Относительные средние продольные деформации образцов

Третий эксперимент был проведен с целью сравнения прочностных характеристик при работе на срез с изгибом бетонных и железобетонных образцов с внутренней обоймой (рис. 10). Размеры образцов 100х100х400 мм. Класс бетона В15. Разрушающая нагрузка для образцов с внутренней обоймой в 6,8 раз превысила максимальную нагрузку для бетонных образцов. В диссертации приведена методика эксперимента, основные характеристики образцов и полученные результаты.

Четвертый эксперимент – испытания модели безригельного каркаса в масштабе 1:6 , в которой колонны выполнены в двух вариантах – без внутренней обоймы и с внутренней обоймой, а в плите перекрытия в двух ячейках сделаны заранее организованные трещины. Зафиксированные прогибы плит со стохастически образующимися трещинами были больше, чем у плит с организованными трещинами на 10-45%. Сложное напряженное состояние крайних колонн привело к разрушению по наклонному сечению колонн без обоймы, колонны же с внутренней обоймой остались целыми, что свидетельствует о их повышенной надежности при работе на срез с изгибом (рис. 11, 12).

Рис. 10. Испытания образцов на срез с изгибом

Рис. 11. Разрушение модели 1:6

Рис. 12. Разрушение колонны

без обоймы

В четвертой главе представлен анализ результатов выполненных исследований, в том числе отражающих новый принцип формообразования.

В исследованиях , , показано, что учет геометрических несовершенств при возведении монолитных железобетонных безригельных каркасов приводит к увеличению количества арматуры до 15%.

При проектировании многоэтажных зданий с использованием формообразующего остова возможные отклонения от вертикали при возведении каркаса учитывать не следует. В г. Новосибирске по ул. Урицкого возводится 12-этажный объект из монолитного железобетона, представляющий собой безригельный каркас (рис. 13).

Рис. 13. Формообразующий каркас

Нижние четыре яруса первой очереди возведены с использованием сталежелезобетонного каркаса. Остальные этажи возводились по обычной схеме. В диссертации приведены результаты геодезического мониторинга при строительстве этого здания. Отклонения верхних точек четырех нижних ярусов первой очереди от вертикали практически отсутствуют, в остальных же случаях отклонения значительны. Таким образом, применение сталежелезобетонного каркаса исключает необходимость повышения расхода стали, что при необходимой и достаточной надежности и эксплуатационной долговечности приводит к снижению его себестоимости.

Одним из видов разрушения при одноразовых динамических воздействиях является срез колонны. Проведенный эксперимент с бетонными элементами и элементами с обоймой показал, что последние выдерживают разрушающую нагрузку в 6,8 раз большую, чем бетонные. Характер разрушения бетонных элементов – хрупкий, элементов с обоймой – пластический.

Результаты измерений деформаций, полученных при испытании образцов с разными видами обойм, подвергли статистической обработке. В диссертации приведены исходные данные из 3000 измерений, результаты аппроксимации зависимостей различными функциями, как для показаний отдельных датчиков, так и для групп измерений, сделана проверка достоверности полученных результатов с помощью Т-критерия Стьюдента.

По данным проведенного эксперимента с достоверностью 85% средние продольные деформаций образцов с обоймой качественно превышают средние продольные деформаций образца без обоймы.

Рисунок1.bmp

Рисунок2.bmp

Рис. 14. Аппроксимация поперечных деформаций

образцов без обоймы

Рис. 15. Аппроксимация поперечных деформаций

образцов с обоймой

Анализ горизонтальных деформаций элементов показал, что модели с обоймой деформируются линейно на большем отрезке нагружения, чем образцы без обоймы (рисунок 14, 15). По экспериментальным точкам составлены уравнения регрессии. Для образцов без обоймы уравнение деформаций от нагрузки имеет вид:

;

для образцов с обоймой:

.

Вычисленные по данным уравнениям точки перегиба гиперболы, означающие конец линейного деформирования, соответствуют для образцов без обоймы нагрузке 700 кН, а для образцов с обоймой 1000 кН, что на 43% больше.

На основе предложенной в работе инженерной методики расчета образцов с обоймой построены зависимости несущей способности сжатого элемента от шага поперечных стержней (рис. 16) и график влияния класса бетона на эффективность применения обоймы (рис. 17). В диссертации представлены графики зависимостей эффективности внутренней обоймы от размера сечения, количества продольной арматуры и ее класса.

Безымянный.bmp

Безымянный.bmp

Рис. 16

Рис. 17

Результаты исследований внедрены в практику проектирования зданий и сооружений, в частности здания технопарка в РП «Кольцово» НСО, где применен сталежелезобетонный каркас.

Выводы и рекомендации

1. Разработан новый принцип формообразования конструктивной системы безригельного монолитного каркаса многоэтажных зданий с использованием металлического остова в его элементах, который кроме функции жесткой арматуры выполняет роль внутренней обоймы.

2. Анализ результатов физического эксперимента показал увеличение несущей способности колонн с внутренней обоймой по сравнению с колоннами без обоймы до 24%, что позволяет снизить класс бетона, уменьшить сечение колонн, тем самым увеличивая полезную площадь здания.

3. Экспериментально установлено, что если металлический остов колонн проходит сквозь плиту, в узле сопряжения при условии съемных поддерживающих ригелей необходимо устанавливать дополнительные элементы, увеличивающие сопротивление продавливанию; в случае, если ригель находится внутри плиты – дополнительных элементов устанавливать не требуется.

4. Предельные продольные деформации для образцов с обоймой по сравнению с образцами без обоймы по результатам физического эксперимента возрастают до 78%, поперечные – в 1,5-2,5 раза. Это позволяет рекомендовать применение арматурной высокопрочной стали (арматуры А600С) в сжатых элементах с внутренней обоймой с повышенным сопротивлением сжатию.

5. Результаты физического эксперимента бетонных балок с заранее организованными трещинами позволили уточнить картину перераспределения напряжений в бетоне при полном отсутствии арматурной стали. Эти результаты, а также характер деформирования плит перекрытий безригельного каркаса физической модели и расположение образовавшихся трещин позволили выдвинуть предложения по расчету плит безригельного каркаса с заранее организованными трещинами.

6. Применение формообразующего сталежелезобетонного каркаса повышает точность возведения монолитных многоэтажных зданий и не требует дополнительного армирования, связанного с геометрическими несовершенствами. Проведенные геодезические измерения и использование системы измерения полей деформаций на строительстве 12-этажного жилого здания в г. Новосибирске позволили подтвердить вышеизложенные выводы.

7. Разработана инженерная методика расчета сжатых элементов с внутренней обоймой при плоском и трехмерном обжатии. В отличие от существующих методов, применен новый подход к исходным предпосылкам, позволяющий получить результат, наиболее адекватный физическому эксперименту.

8. Проведена статистическая обработка результатов измерений в физическом эксперименте на образцах с внутренней обоймой разных типов. Получены обобщения, позволяющие оценивать влияние внутренней обоймы на продольные и поперечные деформации и на несущую способность сжатых элементов.

9. Испытания модели безригельного каркаса до разрушения позволили выявить характер трещинообразования в плитах перекрытий, получить сравнительные результаты деформирования узлов сопряжения «плита-колонна» для колонн с внутренней обоймой и без нее.

10. Результаты экспериментальных и теоретических исследований внедрены в практику проектирования и строительства на реальном объекте, выполнено проектирование в полном объеме здания с использованием формообразующего каркаса, который при весьма сложной стеклянной фасадной системе позволил ускорить и упростить процесс возведения за счет отсутствия геометрических несовершенств и уменьшить сечение колонн нижних этажей.

Основное содержание диссертации отражено в следующих работах:

- Издания, рекомендованные ВАК РФ:

1. Логунова, М. А. Экспериментальные исследования бетонных балок без организованных трещин и с заранее организованными трещинами [Текст]/ , // Изв. вузов. Строительство. – 2011. – № 1. С. 116 – 120.

2. Митасов, В. М. К вопросу учета и уменьшения влияния начальных геометрических несовершенств при возведении многоэтажных каркасных зданий [Текст]/ , , // Изв. вузов. Строительство. – 2012. – № 2. С. 91 – 97.

3. Пантелеев, Н. Н. К вопросу определения несущей способности железобетонных колонн с внутренней обоймой [Текст]/ , , // Изв. вузов. Строительство. – 2012. – №3. С. 105 – 110.

4. Митасов, особенности и расчет железобетонных плит с заранее организованными трещинами [Текст]/ , , // Изв. вузов. Строительство. – 2012. – № 6. С. 119 – 123.

- Сборники материалов международных конференций:

5. Митасов, -монолитный сталежелезобетонный каркас для строительства в условиях Сибири [Текст]/ , //Актуальные проблемы науки. Ч.6. – Тамбов: ТРОО «Бизнес-Наука-Общество», 2011. – С. 101 – 103.

6. Митасов, -монолитный сталежелезобетонный каркас для жилищного и гражданского строительства [Текст]/ , //Проблемы современного бетона и железобетона. Ч.1. Бетонные и железобетонные конструкции. – Минск: Минсктиппроект, 2011. – С. 269 – 274.

7. Митасов в железобетонных конструкциях [Текст]/ , , // Железобетонные конструкции: исследования, проектирование, методика преподавания. Сборник докладов международной научно-методической конференции (4-5 апреля 2012 г. г. Москва). – М.: МГСУ, 2012. – С. 269 – 276.

8. Митасов сборно-монолитный каркас [Текст]/ , , , // Железобетонные конструкции: исследования, проектирование, методика преподавания. Сборник докладов международной научно-методической конференции (4-5 апреля 2012 г. г. Москва). – М.: МГСУ, 2012. – С. 276 – 282.

- Патенты:

9. Пат. 112693 Российская Федерация, МПК E04B 1/16. Железобетонный каркас здания [Текст] / , , (Россия). - №/03; заявл. 08.11.2010; опубл. 20.01.2012, Бюл. №2. – 2 с. : ил.