Чрезвычайно интересное явление быстрой перемены органов вегетативных на генеративные (половые) дает нам вырванная с корнем и, вследствие этого, обреченная на смерть настурция. Растение это обладает особенным свойством сохранять жизнь еще некоторое время после того, как его вырвут, черпая влагу и пищу из воздуха, как эпифиты* (растения, живущие на стволах и ветвях деревьев без почвы, улавливая пищу и влагу из воздуха). Эти последние минуты жизни настурция употребляет на то, чтобы образовать семена и тем продолжить свое существование в потомстве. Для этого повещенная на стене настурция развивает массу цветов, появляющихся вместо утерянных листьев.
К образованию семян растения побуждает борьба за существование. (1) Садовники заметили, что густо посаженные помидоры родят обильнее, чем посаженные поодиночке. Такие же наблюдения сделал проф. Шредер в Москве над поленикой*, превосходной ягодой севера (княженика, ароматнейшая из ягод, похожа на морошку). У г. Добрского густо посеянный люпин дозревал неделей раньше посеянного редко. В окрестностях Ростова огородники густым посевом сахарного горошка заставляют его выбрасывать большее количество стручков. В Америке густая* посадка клубники (чаще в ряду, но шире междурядья) дает такие же результаты и т. д.
(1) Ещё Тимирязев указал, что это слово Дарвин употребил не в смысле “борьбы с кем-то”, а в смысле усилий выжить, устойчивости к разным факторам. В природе никто ни с кем не борется. Здесь идёт соревнование в приспособленности к среде. Кто более приспособлен – тот и побеждает. Борьба – “изобретение” человека.
Фактор борьбы за существование имеет для нас, земледельцев, большое значение. Выращивая тысячи растений, мы не в состоянии применять к ним средства, употребляемые садовниками. Единственно, принуждая растение вести соответственным образом борьбу за существование, мы можем получить обильное и более раннее плодотворение. Прежде всего, однако, следует помнить, что слишком напряженная борьба за существование может быть причиной гибели растения или того, что полученное зерно будет легкое и плохое, как послед. Поэтому, сгущая растения с целью заставить их вести борьбу за существование, в то же время нужно тут же возле них оставлять свободное место, чтобы обеспечить растения достаточным количеством света и как бы заохотить их к образованию тяжелого зерна в надежде, что оно упадет тут же на свободное пространство.
Потому что иначе густо растущие растения производят обыкновенно легкие семена для того, чтобы ветер мог унести их дальше, на свободное место, как это мы видим на примере густо растущих репейников, бодяков и проч.
НОВАЯ СИСТЕМА ЗЕМЛЕДЕЛИЯ
Система земледелия, основанная на самодеятельности растений, применяется в хозяйствах уже несколько лет. Как я говорил, она заключается в том, чтобы: 1) растения росли густо, вследствие чего они вынуждены вести борьбу за существование и 2) чтобы они имели возле себя свободное пространство и, следовательно, изобилие питания и света.
Удовлетворить эти, на первый взгляд противоречивые требования было не так-то легко. Высеваемое кучей, зерно и падает кучей, по нескольку зерен вместе. Пуская корешки, растеньица теснят друг друга и сразу развиваются ненормально. Они тонки внизу, как ниточки, и слабые стебли не могут удержать растения, которые полегают при первом ветре. Следовало бы подпирать их, как это делают Ростовские огородники с густо посеянным в ряд горошком, но очевидно, что при полевой культуре это невозможно. Нужно бы, значит, найти способ посадки хлебного зерна густо, но, вместе с тем, каждое зерно отдельно, поодиночке. К счастью, теперешняя техника настолько стоит высоко, что этот вопрос может быть разрешен надлежащим образом.
Поэтому уже осенью 1895 года результаты новой системы посева, введенные мною на полях Гриноуцкой (Бесарабия) земледельческой школы, были настолько заметны, что обратили на себя всеобщее внимание. Когда посещал школьное хозяйство уполномоченный от Министерства земледелия г. Бертенсон, то я повел его прежде всего на поля, засеянные овсом по обыкновенной системе и попросил, чтобы он внимательно присмотрелся к колосьям. После того мы пошли на рядом лежащее поле, засеянное тем же сортом овса, но по новой системе, и колосья оказались большими в два раза. Не было почти ни одного меньше 1/2 аршина (аршин – около 70 см). А урожай в данном случае тоже был в два раза больший.
Такие же результаты получились при посеве ячменя, пшеницы яровой, и другие растения, сеяные по новой системе, росли сильнее, раньше дозревали, меньше подвергались ржавчине, давали прекрасные колосья, зерно было ровное, тяжелое, дородное, так что при очистке последа почти не было. Озимь, посеянная осенью того же года, была настолько великолепной, что местные земледельцы съезжались со всех сторон, чтобы посмотреть на нее. Осенью я уехал из Бессарабии, после чего посевы в школе осматривали г. Кишинёвский Губернатор и председатель губернской земской управы г. Кристи. "Посевы произвели фурор" – говорит мне попечитель школы г. Казимир, который показывал их. И действительно, в Подольской губернии и в Бесарабии я не встречал больше таких прекрасных репака (масличная сурепка), ржи и пшеницы. И вот именно что рожь в следующем 1896 году достигла неимоверной вышины: 31/4 аршина (2,2 метра) и больше. Несколько таких громадных кустов сеянной мною ржи, взятых с полей школы, я показывал участникам Подольского земледельческого съезда в Проскурове. Такого громадного хлебного растения никто из них до сих пор не встречал. Подобные же результаты я получил в прошлом году (1897 г.) в Подольской губернии, возле Каменца, где я тоже ввел новую систему.
Достоинства новой системы земледелия, основанной на самодеятельности растений и на новых началах обработки, суть следующие:
Уменьшает она стоимость обработки и посева часто больше, чем наполовину.
Увеличивает урожай (иногда вдвое).
Новая система регулирует влагу в почве, вследствие чего растения во время засухи всходят и растут без дождя.
В слишком дождливые лета растения меньше страдают от избытка влаги.
Бактерии находят самые благоприятные условия развития в почве, размножаясь с неимоверной быстротой; они, собственно говоря, приспособляют землю к плодородию (часто сильному).
Газы, влага, споры бактерий, пыль различного рода поглощаются из атмосферы самым энергичным образом.
Дозревание растений ускоряется, вследствие чего они меньше страдают от паразитов, например, от ржавчины, меньше подвергаются выжиганию на юге и заморозкам на дальнем севере.
Растения достигают часто исполинской вышины.
Зерно получается более дородное и более тяжелое.
Растения не вылегают так, как при посеве по старой системе.
Ввиду этих достоинств новой системы земледелия, не удивительно, что как поля Гринауцкой земледельческой школы, так и хозяйство возле Каменец-Подольска были посещаемы многими земледельцами и представителями власти.
Мы считаем обязанностью познакомить с новой системой более обширный круг читателей. Труд мы делим на две части: в первой из них мы дадим наставления к обработке земли на новых началах, во второй укажем способы посева различных растений.
Глава II
Питание растений. Вступление к новым началам обработки.
Растения, которые мы собираемся разводить, только тогда хорошо вырастут и дадут желательный урожай, когда мы, кроме принятия во внимание их деятельной самобытности, соберем для них в почве соответственной обработкой изобилие нужной им пищи в легко усвояемом корнями состоянии. Иначе растения будут развиваться плохо, и вместо ожидаемой пользы принесут убытки.
ИСТОРИЯ ВЗГЛЯДОВ НА ПИТАНИЕ
Теперь мы знаем, что питательные вещества разводимых нами растений принадлежат к неорганической природе. Другие, однако, взгляды на питание растений господствовали до 1840 года, то есть до того времени, когда появился труд Либиха под заглавием "Химия, примененная к земледелию". Плодородность перегнойных почв навела предшественников Либиха на мысль, что возделываемые растения питаются исключительно органическими остатками растений и животных. Последователи гумусной теории не обратили внимание на то, что первые растения, которые появились на земле, не имели в своем распоряжении органических остатков. Уже это одно подтачивало теорию перегноя, которая и пала под ударами натуралистов новой школы.
По выходе в свет сочинения Либиха появились труды Вегмана и Польсдорфа, как результат конкурса, назначенного академией наук в Геттингене. Этим ученым удалось воспитать растения в песке, лишенном перегноя, исключительно при помощи минеральных веществ.
Последний же удар гумусной теории нанесла водная культура. Опыты показали, что можно довести растения до полного развития и плодотворения, если поместить их в дистиллированную воду, заключающую в растворе (на 1 литр 5 граммов) смесь: азотно-кислого кальция (4 части), фосфорной кислоты, азотно-кислого натрия, а также серно-кислого магния (по одной части). К этому раствору добавляется фосфорно-кислое железо, пока жидкость не сделается слегка мутной. Этим способом доводились до полного развития и плодотворения (сн) хлебные злаки, картофель, бураки, табак и даже деревца.
( ) Известно много разных питательных смесей для растений. Они применяются в гидропонике (выращивание растений без почвы). Современные удобрения содержат сбалансированный комплекс всех нужных элементов питания, в том числе микроэлементов в органических (хелатных) формах, которые усваиваются растениями непосредственно. Но добавки минеральных веществ не решают проблемы плодородия почвы, что далее и объясняет Овсинский со всеми подробностями.
Теория Либиха казалась неопровержимой, а теория перегноя пала. Стало аксиомой, что растение может развиваться вполне нормально без добавления пищи, состоящей из органических веществ, то есть из растительных и животных остатков. Мало того: старались доказать, что органические вещества даже совсем непригодны для питания растений, и что эти последние могут подкрепляться органическими остатками только после их полного разложения (минерализация). Однако новейшие исследования показывают, что органические остатки всё же служат пищей для возделываемых растений.
Если бы Либих и его последователи удовольствовались бы указанием способа питания растений, то это было бы полезно и для них и для науки. Но Либих в дальнейшей своей деятельности наделал чудовищных ошибок, которые привели всю школу на неверный путь, а земледелию принесли неисчислимые убытки.
Фальшивое в своем основании и печальное в своих заключениях, учение Либиха напоминает теории средневековых проповедников. Проповедники эти учили, что Создатель от века предназначил миллионы людей в ад, и что никакое покаяние - ни посты, ни молитва не избавят осужденных от ада. Земледельцы же наши и до сих пор дрожат перед призраком истощения полей, какое показал им Либих, и часто спасаются от грустной перспективы такими средствами, которые вызывают банкротство владельца прежде, чем наступит банкротство его земли. Рецепты обработки и удобрения, при тщательном их рассмотрении, удивляют своей нелогичностью и дороговизной. К счастью еще, что значительная часть земледельческого люда не знала, что “учитель сказал”, и не перестала хозяйничать так, как хозяйничали их предки. Потому что иначе хозяйничать и есть хлеб стало бы уделом исключительно небольшой горсти тех, которые могли бы запрягать три пары волов в немецкий самоход, а землю посыпать порошками. Однако, прежде чем заняться более подробно этим вопросом, мы окончим прежде обзор растительных питательных веществ.
ПИТАТЕЛЬНЫЕ ВЕЩЕСТВА
Некоторые из составных частей растений находили только в редких случаях, другие же можно было найти в каждом растении и даже каждой его части. К числу самых главных составных частей растений принадлежат: углерод, кислород, азот, водород, сера, фосфор, кремний, кальций, хлор, калий, натрий, магний, железо. Дальше же, в отдельных видах растений, или в известных их органах можно найти: йод, фтор, алюминий и марганец. Другие составные части приходится встречать очень редко, или в весьма ограниченном количестве (сн).
( ) Не стоит поправлять Овсинского: ясно, что состав растений и почвенных растворов сейчас установлен гораздо точнее. Но суть новой системы как раз в том, чтобы необходимость определять состав почвы вообще отпала. Зачем его определять, если известно, что плодородие почвы максимальное, а урожаи наивысшие?
Из этих элементов Либих и его последователи признавали самыми главными фосфор и калий. Буссенго же и Пэйен доказывают важность азота. Во всяком случае, три эти элемента окончательно признаются всеми за самые главные составные части растений, и даже такой авторитет, как Грандо, труды которого обнаружили громадное значение перегноя на почву, утверждает, что “изобилие азота, фосфора, и калия в почве составляет вопрос жизни самого земледелия”. Вот земледельцы и начали тратить миллионы на покупку этих удобрений, желая этим и повысить урожай и отвратить признаки истощения почвы.
Самым дорогим из этих трех веществ является азот, который в искусственных удобрениях стоит почти в семь раз дороже, чем фосфор. А так как при существующей фальшивой системе обработки земледельцы запада считают необходимым прибавлять искусственное удобрение даже и там, где без него можно обойтись, то на покупку удобрений они тратят громадные суммы.
Ничего, однако, против этого нельзя иметь там, где почва по своей природе вовсе не заключает в себе ни азота, ни фосфора, ни калия, ни извести. Тогда прибавка удобрения является необходимостью, против которой никто возражать не станет. Но, в действительности, дело обстоит совсем иначе. Так, например, земля, для которой считают благотворным добавить 100-150 килограммов чилийской селитры на гектар, заключает в себе обыкновенно килограммов азота на гектаре. Следовательно, удобрение здесь кладется исключительно только потому, что мы нерациональной обработкой делаем готовый запас азота недоступным для растений.
На большее содержание азота в почве обратил внимание еще Либих и на основании этого утверждал, что хлевный навоз действует на почву не содержанием азота, а калием. Ошибку Либиха доказали Буссенго и Пэйен, которые, удобрив один участок навозом, а другой золою (калий), взятой из того же количества навоза, получили: в первом случае 14 зерен, во втором же – 4.
Несмотря на то, приверженцы минеральной теории не перестали идти за своим блуждающим огоньком. "Либих, – говорит Дэгерен, – мог создать свою минеральную теорию только потому, что ему не было известно количество фосфорной кислоты и калия в почве. Если бы он знал, как это знаем мы теперь, что почва заключает в себе не меньше фосфорной кислоты и калия, чем азота, то он должен бы был уступить".
На самом деле, если большое количество соединенного азота в почве исключает необходимость удобрения, то совершенно такой же вывод будет рациональным по отношению к фосфорной кислоте и калию. Употреблять их нет надобности, так как почти в каждой почве анализ обнаруживает их присутствие. Таким образом, мы пришли бы к заключению, что удобрения бесполезны и не нужны.
Последний вывод, согласиться с которым не осмеливается Дэгерен, был бы, однако, вполне рациональным, если бы мы не были настолько бессильны в пользовании теми исполинскими запасами фосфорной кислоты, калия и азота, которые заключаются в наших почвах.
Что касается самого дорогого – азота, то, кроме почвы, громадное количество этого продукта заключается в атмосфере. Но земледельцы Западной Европы, однако, совершенно не способны пользоваться этими исполинскими источниками и тратят миллиарды на удобрения. Дэгерен замечает, что препятствием здесь является иногда засуха, как это было во Франции весною 1893 года, вследствие чего не могла проходить нитрификация* (перевод бактериями свободного азота в его окисленную форму - нитраты, усвояемые растениями), а иногда он нарекает на общепринятую систему обработки и мечтает о том, что техники придумают когда - то лучшую.
"Техники, – говорит Дэгерен, – должны придумать орудие, которое будет разбивать, рыхлить, встряхивать и проветривать нашу землю совершенно иначе, как это делают наши сохи и плуги, которые, очень может быть, через каких-нибудь 50 лет будут собраны в музеях редкостей вместе с обугленными кольями диких народов или сохою галлов". Дэгерену вольно не знать, что проходит третий десяток лет с тех пор, как новая система обработки, которая облегчает пользование громадными запасами почвы и атмосферы, нашла у нас практическое применение и начала распространяться в крае, вследствие чего техникам здесь уже нечего делать.
Цивилизованные европейцы не интересуются знать, что делается у варваров-славян. Французы привыкли, что мы заимствовали у них просвещение, и что за патентом учености приходили к ним. Однако же, смело могли и цивилизованные французы потрудиться прийти к нам, чтобы увидеть хлебные злаки, выросшие более 3-х аршин без удобрения, а исключительно благодаря новой методе обработки. Стоит посмотреть и на те хлеба, в которых прячется всадник на коне, о которых Дэгерену и во сне не грезилось, и на ту обильную растительность среди степей южной России, где растения всходят и растут без дождя во время страшных засух, о которых французы и понятия не имеют.
Стоит увидеть это все, чтобы раз и навсегда отречься от прежней системы обработки, которая не одного уже француза привела к банкротству. Следует понять, что весь этот балласт формул обработки и рецептов удобрения давно уже стал анахронизмом (это 100 лет назад!!!), и что приверженцы старой системы, портя землю своей обработкой, стараются свою ошибку замаскировать удобрениями и известкованием. Поступают они в данном случае так, как врач, который одной рукой дает отраву, другою же – противоядие, утверждая при этом, что вся операция полезна для пациента. Пора перестать верить в рациональность такого обращения с нашей почвой, доступного исключительно для тех богачей, и пора начать извлекать пользу без этих чрезвычайных расходов, из тех громадных запасов растительной пищи, которые могут доставить нам почва и атмосфера.
В дальнейшем продолжении настоящего труда мы рассмотрим более подробно эти источники растительной пищи и укажем средства, при помощи которых питательные вещества, заключающиеся в почве и атмосфере, можно сделать доступными для возделываемых растений
Глава III
Источники пищи растений: атмосфера и почва
Перечисленные в предыдущей главе питательные вещества находятся меньшей частью в атмосфере, а большею – в почве (сн).
( ) На самом деле вопрос ПИТАНИЯ РАСТЕНИЙ выходит далеко за рамки минеральной агрохимии. Из чего растение состоит, тем оно и питается. Дмитрий Иванцов в брошюре “ЭМ – биотехнология природного земледелия” наглядно это показал. Основным элементом питания является углерод – из него растение состоит на 50%. Ещё 20% в нём - кислорода. Эти газы поглощаются из воздуха. Ещё 8% водорода приходит с водой – опять же, из атмосферы. И только 15% азота и 7% минералов растение берёт из почвы. Азот же тоже туда попадает в основном из атмосферы – его фиксируют бактерии. Посему реальное питание растений - это 80% атмосферно-угле-водного, и 20% почвенно-минерального питания. Всё это едино, одно без другого не работает. Система Овсинского, как никакая другая, обращает на это внимание.
АТМОСФЕРА
Атмосфера составляется из газов, в числе которых в виде мелкой пыли поднимаются твердые тела, вместе с чрезвычайно важными для земледелия спорами бактерий. Самую главную составную часть атмосферы составляет смесь из 20,81% кислорода и 79,19% азота, называемая воздухом. Как видим, воздух представляет из себя громаднейший сборник самого дорогого из питательных веществ растений – азота.
Кроме азота и кислорода в атмосфере есть и другие газы. …Она заключает в себе угольную кислоту (углекислый газ), которая в 1,5 раза тяжелее воздуха и содержание по объему которой в атмосфере доходит до 0,0002-0,0005%, а также окись углерода, азотную кислоту и азотнокислые соединения, озон, аммиак, углеводород (болотный газ - метан), сернистый водород, фосфорный водород.
Азотная кислота и азотнокислые соединения образуются под влиянием электрической искры (молнии) на влажную смесь азота и кислорода, или в почве при постепенном разложении азотистых веществ.
Углеводород и сероводород выделяются при разложении органической материи, равно как и фосфорный водород, освобождающийся в особенности после горячих летних дней из торфяных болот или на кладбищах. Газ этот загорается в воздухе, пылая небольшим голубоватым пламенем (ложные огоньки).
Из твердых тел в атмосфере мы находим в водяных парах (образующих тучи и облака и возвращающихся на землю в виде осадков) соль (хлористый натрий). Обнаружено также присутствие йода, крахмала, фосфора, органических частиц (спор и бактерий).
Вообще же содержание органических и неорганических веществ в атмосфере в известных случаях бывает достаточным для пропитания растений без грунта. "Следует заметить, – говорит проф. Бердо, что и сам воздух, хотя и в небольшой степени, заключает в себе составные части почвы. Атмосферный воздух состоит не только из смеси известных газов, но он также заключает в себе водяные пары вместе с некоторым количеством минеральных тел, утучняющих собою почву. Тела эти находятся в достаточном количестве даже для того, чтобы пропитать собою некоторые растения, как, например, лишайники, или некоторые тропические орхидеи и бромелии, служащие настоящим украшением наших теплиц, когда качаются в них, красиво повешенные и едва только прикрытые мхом".
Культурным, однако, растениям атмосфера служит главной поставщицей: углерода, азота, кислорода, водорода и чрезвычайно важной для жизни растений воды.
Остальные же из самых важных составных частей растений: фосфор, калий, известь, сера, магний, а также другие, менее важные, доставляет растениям почва, заключающая в органических частицах тоже большое количество азота.
ВЫВЕТРИВАНИЕ И ПИТАНИЕ
Материк образовался из скал, которые раскрошились под влиянием атмосферных факторов и создали почву, способную питать растения. Явление это произошло под влиянием кислорода и угольной кислоты, вместе с действием воды, непрерывных перемен температуры, выделений корней растений, перегнойных кислот и, наконец, бактерий. Факторы эти действуют издревле. Укрепление их деятельности составляет в настоящее время самую главную задачу земледельческого труда.
Рассматривая более подробно причины разрушения скал под влиянием перечисленных факторов, то есть выветривания, мы находим два рода явлений: одни из них физического, другие же химического свойства. Вода, которою пропитывается поверхность скалы, замерзая, увеличивает свой объем на 1/10 и, вследствие этого, производит громадную силу, разрушающую самые твердые скалы. Части, разрушенные действием замерзающей воды, подвергаются химическим реакциям кислорода и угольной кислоты из атмосферы, вследствие чего разложение горной породы происходит быстрее.
Нужно заметить, что само только разрыхление почвы морозом, без участия химических и биологических факторов, представляет очень медленный процесс. Заметить это необходимо ввиду того, что мы придаем слишком большое значение действию мороза на зябь и забываем, что мороз задерживает деятельность бактерий в почве и химические процессы. Под тропиками, где морозы незначительны, плодородная почва образуется без сравнения скорее, чем ближе к полюсам, где господствуют морозы.
Пахотная земля образовалась и постоянно образуется под сильным влиянием биологических и химических деятелей. Все дело только в том, чтобы деятели эти могли самым интенсивным образом оказывать благотворное влияние на заключающиеся в почве обломки скал и приспособлять их для питания растений.
Обломки эти делятся по величине на две категории: а) обломки более крупные, мало способствующие к оживлению растений, скелет почвы, её запас, резерв, из которого растения могут извлекать пищу только после более тщательного раздробления обломков и б) самые мелкие части почвы, продукт действия химических факторов, составляющий непосредственный источник питания растений.
Плодородность почв, следовательно, зависит: 1) от химического состава образующих их обломков горных пород и 2) от степени раздробления и растворения этих обломков. Породы химически бедные, как кварц, дают землю мало плодородную (песчаную), вследствие чего труд над лучшим размельчением частичек такой земли дает менее значительные результаты. Иначе, однако, обстоит дело, если почва составлена из обломков горных пород химически богатых, заключающих в себе нужные для растений: калий, известь, фосфор и т. д., но недостаточно размельченных. В подобных случаях доставление удобрений почве становится неблаговидной расточительностью, потому что мы гораздо дешевле можем получить для растений соответственные питательные вещества, ускоряя выветривание обломков.
ЗАПАСЫ ПИТАНИЯ В ПОЧВЕ
В большей части случаев почва заключает в себе огромное количество питательных веществ, количество, которое Дэгерен называет "ужасным". Однако же, несмотря на это "ужасное" количество, все-таки тратятся громадные суммы, которые тоже можно назвать "ужасными", на искусственные удобрения, и создается целая литература об удобрении почвы.
Факт этот служит неопровержимым доказательством той истины, что при старой системе обработки почвы мы не в состоянии добыть тех огромных запасов растительной пищи, которые заключаются в почве и атмосфере. Потому что старая* система обработки (это та, которой пользуемся мы сейчас!) не только не облегчает действие факторов, приготовляющих пищу для растений, но намного затрудняет их действие.
Если бы мы хотели на погибель земледелию создать систему, затрудняющую извлечение питательных веществ из почвы, то нам не нужно бы было особенно трудиться над этой задачей: довольно было бы привести советы приверженцев глубокой вспашки, которые вопрос о бездействии питательных веществ в почве разрешили самым тщательнейшим образом. Благодаря этому "ужасное", как говорит Дэгерен, количество пищи в почве недоступно для растений, вследствие чего и результаты получаются действительно "ужасные".
Итак: 1) истрачиваются громадные суммы на увеличенную упряжную силу при глубокой вспашке, 2)издерживаются миллиарды на удобрения, количество которых при рациональной обработке можно значительно уменьшить, или же совсем не употреблять, 3) теряются миллиарды вследствие неурожаев, хотя бы от засухи, которая разоряет хозяйство при глубокой вспашке.
Знаменитый Круп своими снарядами военного разрушения не принес столько вреда человечеству, сколько принесла фабрика плугов для глубокой вспашки. Никакие военные контрибуции* (дань, которую платит захваченное государство) не сравняются с теми убытками, какие приносит земледелию глубокая вспашка. Довольно припомнить голод в России в годах. Довольно было проехаться прошлой осенью (1897 г.) по югу России, чтобы, глядя на черные от засухи поля, понять всю ту обиду, какую наносит земледелию ложная система обработки (сн).
( ) Здась Овсинский употребил самое точное слово: “ложная”. То есть не просто ошибочная, а притворяющаяся настоящей.
Для более подробного разъяснения этого вопроса мы должны привести цифры, указывающие с одной стороны количество питательных веществ, какие растениям могут доставить атмосфера и почва, а с другой стороны указать количество пищи, нужной для получения урожая. Цифры эти убедят читателя, что содержание питательных веществ в почве иногда в 100 и более раз превышает потребности растений. Если, несмотря на это, приверженцы глубокой вспашки и советуют добавлять к земле покупные удобрения, то они этим только дискредитируют свою систему обработки.
АЗОТ
Мы начнем с самого дорогого из питательных элементов растений – азота. Вся растительная масса бычного урожая в Эльзасе (Германия) заключает в себе средним числом около 40 килограммов азота на гектар. Это количество азота может доставить растениям атмосфера и почва.
Здесь и далее Овсинский приводит многочисленные таблицы данных разных опытов. Я опускаю их, вычленив главное.
Азот атмосферы доставляет пищу бобовым растениям, благодаря корневым бактериям. Другие растения питаются азотистыми соединениями, которые из атмосферы переходят в почву.
АЗОТ ОСАДКОВ, ТУМАНА, ИНЕЯ И РОСЫ. Большое количество аммиака и азотной кислоты найдено в росе, инее и тумане. Источник этот тем более имеет для нас значение, что если количество дождей, доставляющих почве аммиак и азотную кислоту, от нас не зависит, то уже количество осаждающейся в почве росы всецело зависит от системы обработки, на что мы ниже и укажем.
По Бино, количество аммиака и азотной кислоты, получаемых с тумана, росы и инея, сравнимо с тем количеством, какое могут доставить почве дождь и снег. Оно, однако, может быть и гораздо большим, если мы искусной обработкой почвы сумеем осадить значительное количество росы. На опытных станциях в Пруссии средним числом найдено количество азота с дождя и снега – около 9 кг на гектар (новейшие данные – 7,2 кг/га – вполне это подтверждают).
А так как роса, иней и туман могут доставить почве столько же азота, то все количество азота достигло бы около 18 кг/га.
Жнитво берет ежегодно с гектара в среднем 40 кг азота, следовательно, атмосфера в своих осадках может доставить почти половину нужного для растений азота.
Точно также высчитывает и Розенберг-Липинский в своем сочинении об обработке почвы.
Вычисление это может более или менее приближаться к истине при глубокой вспашке. Иначе, однако, дело обстоит при новой системе земледелия. Потому что в последнем случае обильное осаждение росы в почве (атмосферная ирригация) всецело зависит от воли земледельца (механизм атмосферной ирригации раскрывается далее).
ПРЯМОЕ ПОГЛОЩЕНИЕ АММИАКА. Кроме того, новая система земледелия способствует поглощению аммиака непосредственно из воздуха. Нижеприведенная таблица (по Гофману) показывает способность поглощения аммиака непосредственно из атмосферы различными видами почвы.
Песок поглощал аммиака 0,0%
Сухая глина 0,2%
Влажная глина (9,5% Н2О) 5,0%
Сухой перегной 11,9%
Влажный перегной (20,3% Н2О) 16,6%
Следовательно, самым энергичным образом поглощает аммиак перегной, и то – перегной влажный. И потому в этом отношении новая система обработки, оставляющая постоянно верхний перегнойный слой наверху и гарантирующая обилие влаги в почве, имеет решительное преимущество перед глубокой вспашкой.
Теперь мы посмотрим, насколько новая система обработки способствует усваиванию азота из других источников.
ПОДЗЕМНАЯ РОСА. Как известно, роса образуется из водяных паров, сгустившихся вследствие соприкосновения с холодным предметом.
Ночью роса обильно осаждается на тех предметах, которые способны быстрее охлаждаться. В этом отношении разные сорта земли различаются: песок обладает силой задерживать тепла вдвое больше, чем перегной.
Как видим, свойство перегноя быстрее охлаждаться ведет за собой обильное осаждение утренней росы, заключающей соединения азота. Однако, более важное значение для нас имеет дневная роса, осаждающаяся внутри пашни, если туда проникает воздух. На это явление обратил внимание И. Бочинский в небольшом сочинении об обработке почвы в 1876 году, а также Розенберг-Липинский.
Количество подземной росы в слое 70 см вычисляется в 1220 тонн на гектар (но это - не в пахатной почве!). А так как роса заключает 0,014% азотных соединений, потому источник этот доставляет почве около 60 килограммов азота на гектар, то есть число, значительно превышающее потребность растений.
МИКРОБЫ. Но, кроме того, атмосферный азот достигает почвы другими путями, а именно, благодаря деятельности микроорганизмов.
Если бактерии существуют, то присутствие перегноя и влага составляют самые главные условия их деятельности. По Бертэлету, на поверхности 1 гектара слой земли толщиною в 8 сантиметров связывает азота:
Песок глинистый……………….47,5 кг
Каолин …………...39,5 кг
Возделываемая земля …………1543,0 кг
По мнению Косовича, содействуют этому известные сопутствующие суглинкам бактерии, не похожие на тех, которые обнаруживают наросты на корнях бобовых растений (сн).
( ) Все микробы, фиксирующие азот воздуха, сейчас хорошо изучены. Только при регулярной глубокой вспашке от них толку немного.
Итак, следовательно, атмосферный азот различными путями достигает почвы и здесь питает растения. Азот, добываемый из этих источников, может (при рациональной обработке) с излишком удовлетворить требования растений. Но напрасное и бессмысленное переворачивание почвы при глубокой вспашке становится помехой для пользования указанными источниками азота. Равным образом, глубокая вспашка не дает возможности пользоваться и теми огромными запасами азота, какие заключает в себе сама почва.
“Анализ показывает, – говорит Дэгерен, – что 1 килограмм средне-плодородной земли заключает 1 грамм соединенного азота. В более плодородных почвах содержание азота возрастает до 2 грамм на 1 килограмм. Еще большее содержание азота бывает на лугах”.
Если корни однолетних растений проникают в почву на глубину 35 сантиметров, то 1 гектар земли на этой глубине будет содержать 4000 килограммов азота в средней плодородности и 8000 килограммов в почве более плодородной. Если количество азота в хорошем урожае бураков или пшеницы мы обозначим даже цифрой 100-120 килограммов на гектар, то можно удивляться, почему для получения хорошего урожая к громадному количеству заключающегося в почве азота нужно еще добавлять 200-300 килограммов чилийской селитры на каждый гектар!
Итак, значит, несмотря на огромные запасы азота в атмосфере и почве, старая система обработки не дает возможности пользоваться этими исполинскими источниками.
Теперь мы переходим к рассмотрению содержания в почве других питательных веществ растений.
КАЛИЙ
По д-ру Мэркеру, хороший урожай отнимает у почвы калия, средним числом, 60-90 килограммов на гектар. Содержание же калия в почве разные исследователи находят следующее: скалистая почва – 300 кг на гектар, глинистая – 4000, богатая низменная – 6000, почва русская, черноземная – 18900 кг на гектар.
Количество калия высчитано в слое толщиной 20 см. Следует, однако, принять во внимание, что растения гораздо глубже запускают корни, следовательно, без сравнения больше калия имеют в своем распоряжении. Следует также помнить и то, что, как показали опыты Вольни, почвы ежегодно подвергаются размыванию, вследствие чего нижний пласт, даже при самой мелкой обработке, постоянно приближается к поверхности и доставляет растениям новые запасы калия и других минеральных веществ.
Ввиду этого, самые ревностные сторонники удобрения калием, например д-р Мэркер, во многих случаях не советуют употребление этого удобрения, а именно на глинистых почвах. На других, менее богатых калием почвах удобрение советуется, но и здесь неизвестно, действуют ли калийные удобрения своим содержанием калия или же другими солями, находящимися в них, которые действуют растворяющим образом на заключенные в почве питательные вещества растений.
Вэльцкер делал опыты с бураками, которые сеяли на калийных солях и на поваренной соли, причем получил лучшие результаты на соли, чем на калийном удобрении. Такие же последствия получились у Лявеса и Гильберта.
Опыты эти помимо воли наводят на мысль, что если бы обработка могла положительно влиять на растворимость находящегося в почве калия, то в большинстве случаев удобрение калием сделалось бы не нужным. Но так как старая система обработки как в этом, так и в других отношениях, совершенно бессильна, то одни немцы в 1891 году употребили каиниту* около 5 центнеров (каинит – природное соединение сульфата калия и солей магния).
Что почва может доставить калий для растений с избытком (с небольшими исключениями), это вытекает и из анализов Дэгерена, который, пропитывая землю кислотами, получил на гектар количество калия без сравнения большее, чем приведенное здесь, и которое он назвал "ужасным". Еще большие числа получили Бертэлет и некоторые другие немецкие агрономы. Поэтому-то Дэгерен скептически относится к удобрению калием, соглашаясь на него в исключительных только случаях, например, на бедных калием торфяных почвах, песчаных и известковых.
|
Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 |


