Контент-платформа Pandia:     2 872 000 материалов , 128 197 пользователей.     Регистрация


Обеспечение точности исполнительных движений в прецизионных автоматизированных станках на основе привода подачи с многоступенчатой фрикционной передачей и переменной структурой управления (стр. 1 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3
 просмотров

На правах рукописи

ВИНОГРАДОВ Михаил Владимирович

Обеспечение точности исполнительных движений

в прецизионных автоматизированных станках

на основе привода подачи

с многоступенчатой фрикционной передачей

и переменной структурой управления

Специальности: 05.02.07 – Технология и оборудование механической

и физико-технической обработки

05.13.06 – Автоматизация и управление технологическими процессами и производствами (в машиностроении)

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора технических наук

Саратов – 2012

Работа выполнена в Федеральном государственном бюджетном

образовательном учреждении высшего профессионального образования «Саратовский государственный технический университет им. »

Научный консультант доктор технических наук, профессор

Официальные оппоненты:

доктор технических наук, профессор,

ФГБОУ ВПО «МГТУ имени »,

профессор кафедры «Металлорежущие станки»

доктор технических наук, профессор,

ФГБОУ ВПО «Саратовский государственный технический университет им. »

профессор кафедры «Информационная
безопасность автоматизированных систем»

доктор технических наук, профессор,

ФГБОУ ВПО «Самарский государственный технический университет»,

заведующий кафедрой «Автомобили
и станочные комплексы»

Ведущая организация Институт проблем точной механики

и управления РАН (г. Саратов)

Защита состоится «26» декабря 2012 г. в 15 часов на заседании диссертационного совета Д 212.242.02 при ФГБОУ ВПО «Саратовский государственный технический университет им. » 7, корпус 1, ауд. 319.

С диссертацией можно ознакомиться в научно-технической библиотеке ФГБОУ ВПО «Саратовский государственный технический университет им. »

Автореферат разослан «___» _____________ 2012 г.

Ученый секретарь

диссертационного совета

Общая характеристика работы

Актуальность проблемы. Обеспечение точности токарной обработки малогабаритных деталей машино - и приборостроения по 1-2 квалитету в автоматизированном режиме обусловливает особое внимание к характеристикам прецизионных станков с ЧПУ и ГПМ. К прецизионным модулям предъявляются высокие требования как по конструкции станка в целом, так и по конструкции отдельных узлов с точки зрения точности и надежности, динамических характеристик, термостабильности, диагностированию состояния, то есть всего того, что обеспечивает устойчивое функционирование.

Прецизионные токарные модули, обрабатывающие детали с размерами не более 50…70 мм по указанному выше квалитету, должны обеспечивать погрешность обработки не более 0,5…1 мкм, шероховатость поверхности 0,03…0,1 мкм. При сверхпрецизионной токарной обработке силы резания малы (не более 30…50 Н), износ инструмента, особенно при резании легкообрабатываемых материалов, незначителен, и, кроме того, обеспечивается стабильный температурный режим работы модуля. Одним из ответственных узлов металлорежущего станка является также шпиндельный узел, участвующий в движениях формообразования. На его долю приходится от 50 до 80% погрешностей. Использование аэростатических опор и средств балансировки обеспечивает высокую точность вращения шпинделя и жесткость. В этих условиях растут требования к приводам подач, чьи характеристики непосредственно влияют на качество формообразующих перемещений рабочего органа - суппорта токарного модуля. Сверхпрецизионная обработка требует обеспечения точности позиционирования суппорта 0,01…0,1 мкм, что часто трудно реализовать из-за несовершенства традиционных механических передач приводов.

Привод подачи является важнейшей частью любого автоматизированного металлорежущего станка (МРС), точность движений его рабочих органов определяет точность обработки деталей, поэтому исследованию точности формообразующих движений рабочих органов металлорежущих станков уделялось особое внимание в исследованиях , , , , , и ряда других ученых. Несмотря на высокие возможности современных цифровых управляющих систем и наличие датчиков положения высокого разрешения, исполнение приводом подачи команд управляющих устройств сопряжено с техническими трудностями вследствие слабой управляемости малых перемещений с дискретностью менее 1 мкм.

В современном автоматизированном прецизионном технологическом оборудовании и контрольно-измерительных машинах в некоторых случаях применяются многоступенчатые фрикционные передачи (МФП), позволяющие в сочетании с аэростатическими направляющими рабочего органа при определенных условиях обеспечить показатели точности, недостижимые с помощью других механических передач. Например, применение МФП в MРC обеспечивает значительное упрощение кинематических цепей, высокий кпд (до 98%), отсутствие люфтов, приемлемую технологичность, низкий уровень вибраций, плавность движений.

В ряде работ рассматривались вопросы точностных характеристик приводов подач, однако в приложении к прецизионной токарной обработке малогабаритных деталей с использованием МФП в приводах подачи они требуют более детального рассмотрения. Применяемый в токарных модулях электромеханический привод подачи имеет в своей основе МФП, содержащую фрикционный редуктор и фрикционную передачу ролик-шток для преобразования вращательного движения в поступательное, а также лазерный интерферометр как датчик обратной связи (ДОС). Исследованием фрикционных передач (ФП) занимались , и другие ученые. Трехступенчатые ФП, разработанные , используются в приводе подачи токарных модулей типа ТПАРМ, обладающих высокой точностью позиционирования (до 0,2 мкм). Важным преимуществом МФП является возможность реализации режима стружкодробления. Однако существующие технические решения и условие применения МФП недостаточно исследованы, отсутствует развитая теоретическая база, благодаря которой можно было бы осуществлять автоматизированное проектирование современных приводов с МФП, особенно с большим числом ступеней, и организовать соответствующее управление.

Таким образом, повышение точности формообразующих движений рабочих органов является актуальным научным и практическим направлением представленной работы.

Целью работы является обеспечение сверхпрецизионной обработки на прецизионных МРС за счет повышения точности исполнительных движений в прецизионных автоматизированных станках на основе привода подачи с беззазорной многоступенчатой фрикционной передачей и переменной структурой управления.

Методы исследований. В основу методологии исследований положен системный подход к обеспечению точности формообразующих движений рабочих органов. При этом сложные взаимосвязи в технологической системе упрощаются благодаря тому, что выбраны формообразующие движения рабочих органов, которые имеют в данном случае основное значение в формировании вклада в результирующую погрешность обработки как меру точности. Теоретические исследования выполнены с использованием положений динамики станков, технологии машиностроения, теории резания, автоматического управления, теории вероятностей и математической статистики, основ метрологии, триботехники, теоретической механики.

Экспериментальные исследования проведены с использованием стандартных виброизмерительных приборов, аппаратуры для анализа случайных процессов, средств контроля точности деталей, а также оригинальных устройств измерения линейных движений на базе тензодатчиков и лазерных интерферометров, автоматизированного контроля температуры и динамических процессов в МРС. Исследования проводились на действующем технологическом оборудовании в лабораторных и реальных производственных условиях. Достоверность результатов обеспечивалась современными методами измерений, соответствующей контрольно-регистрирующей аппаратурой и приборами. Использовались современные программные средства вычислительной техники при моделировании процессов, протекающих в системе, а также при обработке и анализе экспериментальных данных.

Научная новизна работы состоит из следующих наиболее крупных результатов:

1. Для обеспечения точности сверхпрецизионной обработки деталей машино - и приборостроения на основании комплексных теоретических и экспериментальных исследований и внедрения их результатов решена актуальная научная проблема, связанная с созданием научных основ синтеза беззазорных многоступенчатых фрикционных передач, позволяющих осуществить исполнительные движения рабочих органов с точностью до сотых долей микрометра при минимизации возмущающих воздействий.

2. Предложена и обоснована феноменологическая модель точности сверхпрецизионной обработки в виде двумерной функции нормального распределения погрешностей, сформированной на основе учета погрешностей двух формообразующих движений: погрешности позиционирования рабочего органа с инструментом и погрешности вращения шпинделя с заготовкой при условии минимизации влияния на точность обработки в установленных пределах возмущающих воздействий (температурных, вибрационных, силовых, упругодеформационных. триботехнических, износа инструмента).

3. Разработан комплекс моделей, описывающих физическую сущность процессов в многоступенчатой фрикционной передаче и определяющих параметрическую надежность привода, состоящий из:

-  математической модели распределения сил между элементами двух - и трехступенчатой МФП, позволяющей определить оптимальные значения угла между векторами сил поджима роликов, минимальное взаимовлияние фрикционных пар при передаче момента, создающего тяговую силу;

-  математической модели, описывающей динамические характеристики МФП, включающие анализ моментов инерции роликов и штока и выявление доминирующей роли момента инерции первых двух роликов, позволившей рассматривать МФП как звено с передаточной функцией 2-го порядка и выполнить оптимизацию передаточных отношений ступеней МФП;

-  экспериментально-аналитической модели скольжения в МФП как при непрерывных, так и при дискретных сигналах управления движением позволившей выявить практически совпадающие линейные зависимости скольжения от нагрузки на штоке и его пренебрежимо малое влияние на точность перемещений рабочего органа станка при прецизионной обработке;

-  физической модели контактных взаимодействий фрикционных пар МФП при работе без смазки и со смазкой, учитывающей изменение коэффициента трения, деформацию фрикционных пар и фреттинг-коррозию, позволившей обосновать целесообразность применения масла в качестве рабочей среды для стабилизации триботехнических и силовых параметров, снижение износа поверхностей и повышения долговечности МФП.

4. Предложена и обоснована методика и алгоритм диагностирования привода подач МФП токарного модуля. включающие контроль тяговой силы, потребляемого электродвигателем тока, текущей скорости и координат перемещения суппорта, обеспечивающих эффективное распознавание, а в ряде случаев и предотвращение отказов, что позволяет сократить время восстановления и значительно повысить эксплуатационную надежность модуля.

5. Обоснован алгоритм и переменная структура управления шаговым приводом подачи автоматизированного прецизионного станка с МФП, сочетающие замкнутое и разомкнутое управление с распределением задачи достижения точности перемещения между датчиком обратной связи и вычислительным управляющим устройством.

6. Получены модели погрешности позиционирования суппорта токарного модуля с малыми скоростями, которые позволяют обосновать, что при установленных ограничениях на погрешность вращения оси шпинделя, дискретность ДОС, изменение температуры элементов конструкции станка и окружающей среды, значения сил резания и характеристики режущей части резца, токарный станок обеспечивает сверхпрецизионную обработку малогабаритных деталей машино - и приборостроения.

Практическая ценность и реализация результатов работы:

На основании теоретических и экспериментальных исследований, выполненных на токарных МРС 16Б04П, ТПК-125В, ТПАРМ-100. ТПАРМ-100М, ТПАРМ-80 и шлифовальных станках 3А227В и SwaAGL-50, разработаны методы обеспечения макро - и микрогеометрических параметров точности деталей на прецизионных станках в условиях эксплуатации, использующие повышение точности формообразующих движений рабочего органа за счет применения привода подачи с МФП и лазерным интерферометром (ЛИ), минимизацию влияния в станках динамических процессов и управление точностью размеров. Реализованы методы анализа силовых взаимодействий фрикционных пар и динамических характеристик МФП. Обоснован алгоритм диагностирования привода подачи и предложена методика расчета долговечности МФП. Определение фактических значений коэффициентов трения фрикционных пар позволяет реализовать селективную настройку МФП при изготовлении и в условиях эксплуатации.

На основе результатов исследований на предприятиях авиационной, электронной, станкостроительной и подшипниковой промышленности г. Саратова внедрены методы и средства, обеспечивающие прецизионную обработку деталей на автоматизированных токарных и шлифовальных станках: метод и система оперативной оценки динамического состояния; переменная структура управления точностью движений при токарной и шлифовальной обработке; методы и средства настройки МФП и динамической балансировки шпинделей в условиях эксплуатации; методики испытаний МРС на технологическую надежность в производственных условиях; технические предложения по совершенствованию конструкции опытных и модернизации серийных образцов МРС.

Результаты работы внедрены на ряде предприятий, что подтверждено актами внедрения.

По результатам работы издано учебное пособие «Конструкции современных автоматизированных станков как объектов управления в машиностроении», используемое в учебном процессе на кафедре «Автоматизация и управление технологическими процессами» СГТУ им.

Апробация работы. Основные результаты диссертации докладывались на 36 конференциях различного уровня.

на международных конференциях:

Наукоемкие технологии в машиностроении и авиадвигателестроении, (Рыбинск, 2012); Проблемы и перспективы прецизионной механики и управления в машиностроении (Саратов, 2002, 2006, 2007, 2009); Динамика технологических систем (Ростов-на-Дону, 2001, 2007); Процессы абразивной обработки, абразивные инструменты и материалы, (Волжский, 2000, 2001, 2002, 2007); Современные технологии в машиностроении, (Пенза, 1997, 2006); Динамика технологических систем (Саратов, 2004); Высокие технологии в машиностроении (Самара, 2002); Актуальные проблемы электронного приборостроения и машиностроения (Саратов, 2002); Комплексное обеспечение показателей качества транспортных и технологических машин, (Пенза, 2001); Региональные особенности развития машино - и приборостроения, (Саратов, 2000); Точность и надежность технологических и транспортных систем, (Пенза, 1998, 1999); Актуальные проблемы анализа и обеспечения надежности и качества приборов, устройств и систем, (Пенза, 1997); Точность автоматизированных производств, (Пенза, 1997); Проблемы управления точностью автоматизированных производственных систем, (Пенза, 1996); Комплексное обеспечение точности автоматизированных производств, (Пенза, 1995).

на всероссийских конференциях:

Проблемы качества технологической подготовки (Волжский, 2007); Современные технологии в машиностроении, (Пенза, 2000, 2002); Информационные технологии в науке, проектировании и производстве (Н. Новгород, 2000); Состояние и проблемы измерений (Москва, 2000); Математические и условно-логические модели объектов для векторно-энергетического управления в технических, биологических и социальных системах (Москва, 1998); Процессы абразивной обработки, абразивные инструменты и материалы (Волжский, 1997, 1998); Автоматизация технологической подготовки деталей на станках с ЧПУ (Санкт-Петербург, 1992); Автоматизация машиностроения на базе станков с ЧПУ и управляющих ЭВМ (Москва, 1976); Ремонт и модернизация технологического оборудования (Москва, 1975).

Экспериментальный образец МФП и результаты его исследований были представлены на VI Саратовском салоне изобретений. инноваций и инвестиций (2011 г.).

Публикации. По теме диссертации опубликовано 112 работ, в том числе 16 статей в изданиях, включенных в Перечень ВАК РФ, 6 монографий, 1 авторское свидетельство.

Структура и объем работы. Диссертация состоит из введения, 6 глав, заключения, списка литературы из 287 наименований и приложений. Работа содержит 346 страниц текста, 118 рисунков и 25 таблиц.

На защиту выносятся:

1. Методологические основы обеспечения точности обработки, базирующиеся на создании научных основ синтеза беззазорных многоступенчатых фрикционных передач, позволяющих осуществить исполнительные движения рабочих органов с точностью до сотых долей микрометра при минимизации возмущающих воздействий

2. Феноменологическая модель точности сверхпрецизионной обработки в виде двумерной функции нормального распределения погрешностей, сформированной на основе учета погрешностей двух формообразующих движений: погрешности позиционирования рабочего органа с инструментом и погрешности вращения шпинделя с заготовкой.

3. Комплекс моделей, описывающих физическую сущность процессов в многоступенчатой фрикционной передаче и определяющих параметрическую надежность привода, состоящий из математической модели распределения сил между элементами двух - и трехступенчатой МФП, математической модели, описывающей динамические характеристики МФП, включающие анализ моментов инерции роликов и штока, экспериментально-аналитической модели скольжения в МФП как при непрерывных, так и при дискретных сигналах управления движением, физической модели контактных взаимодействий фрикционных пар МФП при работе без смазки и со смазкой.

4. Методика и алгоритм диагностирования привода подач МФП токарного модуля. включающие контроль тяговой силы, потребляемого электродвигателем тока, текущей скорости и координат перемещения суппорта.

5. Алгоритм и переменная структура управления шаговым приводом подачи автоматизированного прецизионного станка с МФП, сочетающие замкнутое и разомкнутое управление.

6. Модели расчета погрешности позиционирования суппорта токарного модуля с малыми скоростями.

7. Результаты экспериментальных исследований и практического применения МФП в приводах подачи прецизионных модулей.

Содержание работы

В первой главе изложена методология обеспечения точности обработки, базирующаяся на концепции системного подхода к проблеме обеспечения технологической надежности прецизионных МРС (рис. 1). Необходимый уровень качества станка определяется, в первую очередь, требованиями к точности изготовленных деталей. В работах ряда отечественных и зарубежных ученых отражены различные аспекты проблемы обеспечения точности обработки, однако для прецизионных МРС, когда значительно повышается сложность конструкции и существенное влияние оказывают возмущающие факторы (в т. ч. стохастические), решение проблемы помимо традиционных дисциплин (конструирование станков, технология машиностроения, динамика станков и другие) требует привлечения положений теории автоматического управления, прикладных методов теории оптимизации и случайных функций, методов и средств вычислительной и информационно-измерительной техники. Установление такой взаимосвязи возможно только в рамках адаптированного к данной проблеме системного подхода как методологической основы, позволяющей на междисциплинарном уровне объединить упомянутые направления. Ранее А. с. Прониковым разработаны научно-методические основы системного подхода к проблеме надежности машин, а и а. а.Игнатьевым сформулированы научно-методические основы системного анализа надежности и функциональной устойчивости МРС. В данном исследовании системный подход к указанной проблеме развивается в направлении решения ряда фундаментальных и прикладных задач, связанных с совершенствованием приводов подачи.

Рис. 1. Структура обеспечения точности формообразования
на прецизионных автоматизированных станках

Возрастающая роль в станочном парке машиностроительных производств автоматизированных прецизионных металлорежущих станков (МРС), обладающих новизной технических решений, и соответствующие условия эксплуатации ставят ряд новых задач в области обеспечения точности обработки и надежности их функционирования. Решение этих задач возможно только в комплексе на основе системного подхода к анализу всех имеющихся на сегодняшний день направлений исследований по проблеме обеспечения технологической надежности и повышения эффективности использования автоматизированного металлорежущего оборудования. При этом рассмотрение проблемы связано со всеми этапами создания МРС и периодом их практического использования (разработка, изготовление, эксплуатация). Кроме того, МРС рассматривается как сложная иерархическая система, на верхнем уровне которой выделяется совокупность трех взаимодействующих подсистем: формообразующая, управляющая и вспомогательная.

На уровне разработки для успешной реализации новых технических решений узлов прецизионных МРС необходимо не только использовать современные средства автоматизированного расчета и проектирования, но и определить основные узлы и их характеристики, которые следует контролировать в дальнейшем, выявить возможные дефекты конструкции и выбрать рациональные диагностические параметры, по которым осуществить конструкторскую проработку встраиваемых в станок и средств диагностирования, а также выполнить ряд испытаний отдельных узлов для уточнения расчетных значений параметров и моделей, причем в ряде случаев целесообразным является использование как детерминированных, так и статистических методов. На основе разработанных моделей, исследований и испытаний (в том числе станков – прототипов) выявляются факторы, оказывающие наиболее сильное влияние на станок, определяются пути создания серийного образца.

Длительные исследования токарных, шлифовальных и суперфинишных станков с ЧПУ, станков-автоматов и ГПМ определили комплекс факторов, обеспечивающих точность формообразования (рис. 2). Для осуществления сверхпрецизионной обработки необходимо обеспечить ряд организационно-технических мероприятий по минимизации возмущающих воздействий. В частности, следует обеспечить термостабильность окружающей среды в пределах ± 0,2°С, практически исключить влияние вибрационных возмущений в диапазоне до 400 Гц, ограничить силы резания величиной не более 50 Н, обеспечить шероховатость поверхности режущей части резца Ra 0,001…0,01 мкм.

При минимизации указанных факторов, основную роль в формировании погрешности обработки будут играть два формообразующих узла: привод подачи и шпиндель. Существенное снижение роли вибраций шпинделя на качество обработки достигается его динамической балансировкой. Как показывает опыт, на прецизионных токарных модулях с аэростатическими опорами шпинделя удается снизить неточность вращения оси шпинделя до величины 0,05…0,1 мкм. Отсюда следует, что доминирующая роль в формировании точности отводится приводу подачи.

При разработке теории и методов проектирования новых конструкций механизмов все чаще приходится решать комплексные задачи, т. к. для заказчика представляет интерес разработка не отдельного механизма или узла, а привода в целом. Развитие этого направления сдерживается сложностью моделирования, проектирования, а также технологии изготовления вновь создаваемых конструкций и систем. Это особенно актуально при разработке таких сложных и наукоемких систем, как приводы автоматизированных металлорежущих станков. Кроме того, многообразие методов расчета и классификаций различных типов исполнительных механизмов требует создания универсальных методов проектирования.

Известно, что при малых перемещениях в станках в условиях трения твердых тел даже при постоянной силе тяги может возникать неравномерность скольжения, представляющая фрикционные автоколебания. Вредными проявлениями этого вида колебаний являются неплавность движения суппортов с режущим инструментом по направляющим и, как следствие, периодичность микрогеометрии обработанных поверхностей и погрешности позиционирования, представляющие рассогласование между заданной и фактической величинами подач.

Применяемые в современных автоматизированных металлорежущих станках высокоточные датчики положения и вычислительные устройства позволяют контролировать движение рабочего органа станка вплоть до долей микрометра и формировать управляющее воздействие для осуществление движения на микрометровую величину. Использование существующих исполнительных механизмов, предназначенных для осуществления требуемого движения в реверсивном режиме, сопряжено с трудностями реализации малых перемещений из-за наличия зазоров в зубчатых передачах, недостаточной жесткости ременных передач. Для повышения точности движений рабочего органа металлорежущего станка предлагается концепция исполнительного механизма, способного осуществить перемещение на требуемую малую величину, задаваемую устройством управления. Исследованием приводов подач занимались такие ученые, как , , , L. Moronuki и др.

Имеется положительный опыт использования электромеханического привода с фрикционной передачей в сверхточных станках, в т. ч. уникальных. По принципу действия фрикционная передача, преобразующая вращение электродвигателя в поступательное движение рабочего органа, напоминает реечную передачу. Отличие заключается в том, что зацепление звеньев передачи осуществляется за счет сил трения. Подобные приводы применены, например, на станках мод. UDT-130B фирмы Toshiba (Япония) для точения мини-дисков.

Анализ методов повышения точности движения рабочих органов прецизионных МРС и опыт исследований, выполненных в СГТУ, показал, что МФП обладает высокой технологичностью, не требует специализированных (зуборезных и т. п.) станков для производства, ее элементы могут сравнительно легко выполняться по самым высоким требованиям точности. Отсутствие зазоров и упругих элементов в кинематической схеме гарантирует высокую жесткость и низкую виброактивность привода, отсутствие геометрического скольжения обеспечивает высокий КПД. Указанные факторы в сочетании с направляющими с низким трением дают основание для применения МФП в составе прецизионного привода подачи. В соответствии с целью исследования и проведенным анализом в работе поставлен и решен ряд задач, связанных с разработкой феноменологической модели точности сверхпрецизионной обработки, с обоснованием комплекса моделей, описывающих физическую сущность процессов в многоступенчатой фрикционной передаче и определяющих параметрическую надежность привода, разработкой методики и алгоритма диагностирования привода подач МФП токарного модуля, с обоснованием алгоритма и переменной структуры управления шаговым приводом подачи автоматизированного прецизионного станка с МФП, сочетающих замкнутое и разомкнутое управление, с обоснованием модели расчета погрешности позиционирования суппорта токарного модуля с малыми скоростями и практической реализацией привода с беззазорной МФП в токарных модулях.

Во второй главе предложена и обоснована феноменологическая модель точности сверхпрецизионной обработки в виде двумерной функции нормального распределения погрешностей, учитывающей погрешности двух формообразующих движений: позиционирование рабочего органа с инструментом и вращение шпинделя с заготовкой, при условии минимизации влияния на точность обработки в установленных пределах возмущающих воздействий (температурных, вибрационных, силовых, упругодеформационных, триботехнических, износа инструмента).

Основные показатели качества Пк токарной и шлифовальной обработки: точность размера Тр, точность формы Тф, волнистость В, шероховатость Ш, качество поверхностного слоя Кпс (рис. 2)

Пк=f (Тр, Тф, В, Ш, Кпс). (1)

Доминирующими показателями качества П2к можно принять точность размера и волнистость, т. к. они наиболее явно влияют на эксплуатационные свойства изделий, сравнительно просто определяются и достигаются наладкой оборудования.

П2к=f (Тр, В). (2)

Эти факторы часто взаимосвязаны, т. к. определяются в основном точностью относительных движений инструмента и детали (рис. 2).

Рис. 2. Основные факторы, влияющие на качество прецизионной обработки

Для количественной оценки точности Тп по результатам реального измерения деталей вычисляется коэффициент запаса точности СТ по формуле

, (3)

где , – верхний и нижний предел допуска, соответственно; s – среднее квадратическое отклонение размеров деталей.

Точность Тп оценивается исходя из следующих соотношений: Ст>1,33 – стабильный процесс формообразования, хороший запас точности;
Ст = 1,0… 1,33 – критический режим, так как могут появиться дефекты детали, требуется внимательное наблюдение; Ст < 1,0 – необходимо выяснить причину появления дефектных деталей и принять меры управляющего воздействия, неудовлетворительный запас точности.

Отклонения от точности (погрешность обработки) носит вероятностный характер, поэтому совместная функция плотности вероятностей будет определять вероятность того, что значения отклонений от размера и круглости для двух точек наблюдения находятся внутри некоторой определенной пары промежутков величин в любой момент времени

. (4)

Совместная функция плотности вероятности обеспечивает достаточно большое количество информации о качестве процесса формообразования. Учет всех комбинаций величин отклонений позиционирования инструмента и детали и вращения шпинделей нагляднее всего представить в трехмерном пространстве (рис. 3). При этом функции точности позиционирования инструмента и детали и вращения шпинделей сравнительно легко измерить, что способствует их широкому применению для описания случайных процессов формообразования.

Рис. 3. Модель точности обработки

Совместная функция плотности вероятности определяет вероятность того, что значения амплитуды изучаемого процесса на двух точках наблюдения находятся внутри некоторой определенной пары промежутков амплитуд в любой момент времени, т. е.

. (5)

Совместная функция плотности вероятности является гораздо более сложной, чем другие функции плотности вероятности, и хотя она обеспечивает довольно большое количество информации об изучаемом процессе, эта функция очень редко применяется на практике. Одна из существенных причин этого положения, вероятно, заключается в трудоемкости и продолжительности аналоговых измерений этой функции. Процесс измерений совместной функции плотности вероятности продолжителен, главным образом, потому, что необходимо учитывать все комбинации значений амплитуд х и у. Следовательно, результаты таких измерений получаются не в двухмерном, а скорей, в трехмерном пространстве.

Для случая n параметров решающее правило для признания МРС соответствующим заданному критерию точности

(6)

где . Параметрическая модель создается в течение ряда этапов. Для реальных технических объектов зависимость показателя качества от значений их основных параметров обычно сложна и получить ее в явном виде можно только для простейших объектов. Создание параметрической модели качества обработки на МРС существенно усложняется необходимостью анализа зависимости показателя качества – точности обработки – от параметров формообразующей подсистемы и процесса резания.

Первый этап такого анализа, в наименьшей степени поддающийся формализации – определение перечня параметров (составляющих вектора), оказывающих влияние на показатель качества.

Второй этап создания параметрической модели заключается в определении в пространстве параметров тех их разрешенных значений, которые позволяют сформировать область , соответствующую заданному значению показателя качества.

Третий этап построения модели связан с выделением доминирующих параметров, связанных с формообразованием на данном МРС при дополнительных ограничениях, накладываемых на внутренние и внешние влияющие факторы и выходные параметры точности обработки. При этом используются результаты экспериментальных исследований с применением методов математической статистики и планирования многофакторных экспериментов. Указанное позволяет в конечном итоге сократить количество измеряемых параметров вектора и осуществить переход от исходной n- мерной допусковой области к области с меньшей размерностью . Следует отметить, что область в этом случае представляет собой m - мерный гиперпараллелепипед. Снижение размерности допусковой области упрощает процесс построения и исследования искомой параметрической модели качества обработки на МРС.

В теории управления управляемость обозначает возможность перевести систему из одного состояния в другое. Другими словами управляемость это способность объекта должным образом реагировать на команды управления. Это одно из важнейших свойств системы управления и объекта управления описывающее возможность перевести систему из одного состояния в другое. Система управляема, если каждому воздействию управления соответствует строго определенное состояние параметров объекта, неуправляема или малоуправляема, если объект управления меняет свои параметры произвольно.

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3

Проекты по теме:

Основные порталы, построенные редакторами

Домашний очаг

ДомДачаСадоводствоДетиАктивность ребенкаИгрыКрасотаЖенщины(Беременность)СемьяХобби
Здоровье: • АнатомияБолезниВредные привычкиДиагностикаНародная медицинаПервая помощьПитаниеФармацевтика
История: СССРИстория РоссииРоссийская Империя
Окружающий мир: Животный мирДомашние животныеНасекомыеРастенияПриродаКатаклизмыКосмосКлиматСтихийные бедствия

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организации
МуниципалитетыРайоныОбразованияПрограммы
Отчеты: • по упоминаниямДокументная базаЦенные бумаги
Положения: • Финансовые документы
Постановления: • Рубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датам
Регламенты
Термины: • Научная терминологияФинансоваяЭкономическая
Время: • Даты2015 год2016 год
Документы в финансовой сферев инвестиционнойФинансовые документы - программы

Техника

АвиацияАвтоВычислительная техникаОборудование(Электрооборудование)РадиоТехнологии(Аудио-видео)(Компьютеры)

Общество

БезопасностьГражданские права и свободыИскусство(Музыка)Культура(Этика)Мировые именаПолитика(Геополитика)(Идеологические конфликты)ВластьЗаговоры и переворотыГражданская позицияМиграцияРелигии и верования(Конфессии)ХристианствоМифологияРазвлеченияМасс МедиаСпорт (Боевые искусства)ТранспортТуризм
Войны и конфликты: АрмияВоенная техникаЗвания и награды

Образование и наука

Наука: Контрольные работыНаучно-технический прогрессПедагогикаРабочие программыФакультетыМетодические рекомендацииШколаПрофессиональное образованиеМотивация учащихся
Предметы: БиологияГеографияГеологияИсторияЛитератураЛитературные жанрыЛитературные героиМатематикаМедицинаМузыкаПравоЖилищное правоЗемельное правоУголовное правоКодексыПсихология (Логика) • Русский языкСоциологияФизикаФилологияФилософияХимияЮриспруденция

Мир

Регионы: АзияАмерикаАфрикаЕвропаПрибалтикаЕвропейская политикаОкеанияГорода мира
Россия: • МоскваКавказ
Регионы РоссииПрограммы регионовЭкономика

Бизнес и финансы

Бизнес: • БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумаги: • УправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги - контрольЦенные бумаги - оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудит
Промышленность: • МеталлургияНефтьСельское хозяйствоЭнергетика
СтроительствоАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Каталог авторов (частные аккаунты)

Авто

АвтосервисАвтозапчастиТовары для автоАвтотехцентрыАвтоаксессуарыавтозапчасти для иномарокКузовной ремонтАвторемонт и техобслуживаниеРемонт ходовой части автомобиляАвтохимиямаслатехцентрыРемонт бензиновых двигателейремонт автоэлектрикиремонт АКППШиномонтаж

Бизнес

Автоматизация бизнес-процессовИнтернет-магазиныСтроительствоТелефонная связьОптовые компании

Досуг

ДосугРазвлеченияТворчествоОбщественное питаниеРестораныБарыКафеКофейниНочные клубыЛитература

Технологии

Автоматизация производственных процессовИнтернетИнтернет-провайдерыСвязьИнформационные технологииIT-компанииWEB-студииПродвижение web-сайтовПродажа программного обеспеченияКоммутационное оборудованиеIP-телефония

Инфраструктура

ГородВластьАдминистрации районовСудыКоммунальные услугиПодростковые клубыОбщественные организацииГородские информационные сайты

Наука

ПедагогикаОбразованиеШколыОбучениеУчителя

Товары

Торговые компанииТоргово-сервисные компанииМобильные телефоныАксессуары к мобильным телефонамНавигационное оборудование

Услуги

Бытовые услугиТелекоммуникационные компанииДоставка готовых блюдОрганизация и проведение праздниковРемонт мобильных устройствАтелье швейныеХимчистки одеждыСервисные центрыФотоуслугиПраздничные агентства