Разработка и исследование генераторов детерминированного хаоса для телекоммуникационных систем – часть 1

Коммуникации и связь      Постоянная ссылка | Все категории

На правах рукописи

Беляев Николай Васильевич

РАЗРАБОТКА И ИССЛЕДОВАНИЕ ГЕНЕРАТОРОВ

ДЕТЕРМИНИРОВАННОГО ХАОСА ДЛЯ

ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМ

Специальность 05.12.13 – Системы, сети и устройства телекоммуникаций

Автореферат диссертации на соискание ученой степени

кандидата технических наук

НОВОСИБИРСК 2009

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Сибирский государственный университет телекоммуникаций и информатики» (ГОУ ВПО СибГУТИ)

Научный руководитель: кандидат технических наук,

доцент Субботин Е. А.

Научный консультант: доктор технических наук,

профессор Шувалов В. П.

Ведущая организация: Алтайский государственный

университет

Официальные оппоненты доктор технических наук,

профессор Петров В. П.

доктор физико-математических наук

профессор Владимиров С. Н.

Защита состоится «_____» ______________2009 г. в______часов на заседании

Диссертационного совета Д 219.005.01 при Государственном образовательном учреждении высшего профессионального образования «Сибирский государственный университет телекоммуникаций и информатики»

по адресу: г. Новосибирск, ул. Кирова 86.

С диссертацией можно ознакомиться в библиотеке ГОУ ВПО «СибГУТИ».

Автореферат разослан «____» ________________2009 г.

Ученый секретарь

Диссертационного совета Д 219.005.01

доктор технических наук, профессор Мамчев Г. В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В настоящее время в условиях быстрого развития информационных технологий и совершенствования технических средств обработки, передачи и хранения информации, растет не только количество новых задач в этой области, но и количество технических решений уже известных, традиционных задач. Для этого ведется поиск и создание новых технических средств. Актуальной задачей была и продолжает оставаться, в частности, задача обеспечения конфиденциальности при передаче информации. Одно из направлений решения этой задачи связано с использованием шумоподобных сигналов (ШПС). Техника связи с использованием ШПС достаточно хорошо проработана и в настоящее время продолжает успешно развиваться. Существует еще одно перспективное направление в технике связи, которое способно привести к новым результатам при решении задач конфиденциальности передачи информации. Это направление связано с использованием широкополосных хаотических сигналов (ШХС). Количество работ, посвященных применению в системах связи широкополосных хаотических колебаний, постоянно растет. Это направление появилось после того, как в результате развития нелинейной динамики было открыто явление, названное динамическим или детерминированным хаосом. Было обнаружено, что в некоторых динамических системах, при определенных условиях, возникают особого типа нелинейные колебания, спектр которых не отличается от спектра нормального шумового процесса, но при этом существует определенный алгоритм, используя который, можно эти колебания воспроизвести.

Появление первых работ, положивших начало общей теории хаоса, связано, в первую очередь, с именами таких исследователей, как французский математик А. Пуанкаре и русский математик А. М. Ляпунов. Их работы были посвящены исследованию устойчивости решений дифференциальных уравнений, характеризующих динамические системы, т. е. системы, поведение которых зависит от времени, хотя термин динамический хаос ими не применялся. Возможность появления хаоса в динамических системах было обнаружено при дальнейшем исследовании нелинейных колебаний. Большой вклад в исследование нелинейных колебаний был сделан советскими математиками и механиками А. Н. Крыловым, А. А. Андроновым, Н. Н. Боголюбовым, А. Н. Колмогоровым и др. Однако термин динамический хаос стал широко использоваться, лишь начиная с 1970-х годов, после работ известных зарубежных исследователей в области хаоса Э. Лоренца, М. Файгенбаума, И. Р. Пригожина, и др.

В радиоэлектронных системах возможность появления детерминированных хаотических колебаний была открыта в начале ХХ века. Первым сообщением о наличии нерегулярного шума в ламповом LC – генераторе можно считать сообщение Ван дер Поля, относящееся к 1927 году. Однако возможность использования детерминированных хаотических колебаний в технике связи стала изучаться сравнительно недавно, примерно с 90 – х годов ХХ века. В настоящее время вопросы, связанные с проявлением динамического хаоса в радиоэлектронных системах, в радиофизике, а также проблемы использования хаоса в системах передачи информации нашли свое отражение в работах отечественных исследователей А. С. Дмитриева, В. Я. Кислова, С. О. Старкова, Владимирова С. Н., а также зарубежных специалистов Л. Каданова, Ф. Муна, Д. Швейцера Г. Чена, и др. Ими получены определенные практические результаты по использованию хаоса в радиофизике и в телекоммуникационных системах.

Решение технической задачи создания систем связи на основе детерминированного хаоса является одним из способов обеспечения конфиденциальности передачи сообщений, что уже само по себе является весьма актуальной задачей. Но применение хаотических колебаний в информационных технологиях не ограничивается только системами связи. Существуют данные о том, что процессы обработки информации в живых системах имеют большое сходство с обработкой хаотических колебаний при выделении из них полезной информации. На этой же основе возможна разработка систем памяти нового типа, приближающаяся по своей структуре и по организации работы к системам памяти, используемой биологическими объектами.

Главная особенность детерминированных хаотических колебаний заключается в их большой информационной емкости, а возможность их применения в системах передачи информации связана, прежде всего с тем, что существует вполне определенный детерминированный алгоритм, на основании которого можно воспроизвести необходимые хаотические колебания любое количество раз, необходимое для их технического использования.

Трудности, возникающие при решении технической задачи, связанной с использованием детерминированного хаоса в информационных технологиях, и, в частности, в системах передачи информации, обусловлены необходимостью получения хаотических колебаний с заданными параметрами и вопросами их управляемости. Поэтому создание физических моделей генераторов хаоса и исследование их свойств можно считать необходимым звеном в решении технической задачи создания систем связи, работающих на основе использования детерминированного хаоса.

Таким образом, разработка физических моделей генераторов детерминированного хаоса и исследование их свойств является актуальной задачей, прежде всего для создания телекоммуникационных систем, а также для всех отраслей науки и техники, где возможно в перспективе применение хаотических колебаний.

Цель работы. Целью диссертационной работы является разработка физических моделей генераторов детерминированного хаоса, изготовление их действующих макетов и исследование их свойств. Основное внимание при этом уделяется вопросам управляемости режимами работы генераторов и проверке устойчивости их работы в хаотических режимах.

Задачи исследования.

Разработка схемотехнических решений управляемых аналоговых генераторов детерминированного хаоса и исследование их работы в разных режимах. Разработка схемотехнических решений цифро-аналогового генератора хаоса. Разработка принципа построения системы передачи дискретных сообщений на основе генераторов детерминированного хаоса.

Методы исследования. В работе использованы общепринятые методы разработки и

расчета аналоговых и цифровых электронных схем с применением математического аппарата вычислительной математики, дифференциальных уравнений, а также принципы физического моделирования. Использовались электрорадиоизмерения с применением необходимой для поставленной задачи стандартной измерительной аппаратуры, а также применялся метод компьютерного моделирования при отсутствии возможности непосредственного проведения электрорадиоизмерений.

Научная новизна. В диссертационной работе получены следующие научные результаты.

1. Разработан, исследован и защищен патентом генератор хаотических колебаний с управляемой хаотизацией. В качестве нелинейного элемента, обеспечивающего хаотический режим, в генераторе использован туннельный диод. Управляемость режимами достигается изменением рабочей точки туннельного диода и изменением величины положительной обратной связи.

2. Разработан, исследован и защищен патентом генератор хаоса, работающий на принципе электронно-аналогового моделирования алгоритма, известного в теории хаоса под названием «логистическое отображение». В этом генераторе хаотический режим получается в результате нелинейного преобразования сигнала. Управляемость хаосом достигается за счет изменения коэффициента усиления усилителя, входящего в состав нелинейного преобразователя.

3. Разработаны принципы построения физической модели цифро-аналогового генератора хаоса, работа которого основана на моделировании хаотического алгоритма, известного в теории хаоса под названием «сдвиг Бернулли». Обоснована структурная схема генератора, разработана схемотехника основных узлов, входящих в состав генератора. Методом компьютерного моделирования получены графики ожидаемых колебаний, графики их корреляционных функций и энергетического спектра.

4. Разработана и обоснована структурная схема асинхронной системы передачи дискретных сообщений на основе использования детерминированных хаотических колебаний. получена оценка вероятности ошибки в этой системе. На примере расчета внешних параметров системы передачи дискретных сообщений с РОС-ОЖ и предварительной очисткой кодовых комбинаций от ошибок, показано, что методика расчета подобных систем не требует учета каких-либо специфических параметров, связанных с конкретным типом носителя информации, следовательно вполне пригодна и для систем, в которых используются детерминированные хаотические колебания в качестве несущих.

Практическая ценность. Разработаны и реализованы в виде физических

моделей два генератора детерминированных хаотических колебаний аналогового типа, которые могут быть использованы в экспериментах по передаче информации с использованием хаоса, в учебном процессе при изучении нелинейных и хаотических колебаний в детерминированных системах, для получения шумовых сигналов с заданным спектром, в биологических экспериментах, и т. д. Исследованы свойства этих генераторов.

Разработана структурная схема цифро-аналогового генератора детерминированных

хаотических колебаний, как пример аппаратной реализации цифро-аналоговых генераторов хаоса. Работа этого генератора основана на схемотехническом моделировании хаотического алгоритма «сдвиг Бернулли». Направление, связанное с разработкой цифро-аналоговых генераторов хаоса, еще только начинает развиваться, поэтому все подобные разработки имеют практическую ценность.

Разработана и обоснована структурная схема асинхронной системы передачи дискретных сообщений на основе использования генераторов детерминированного хаоса. Произведена оценка вероятности ошибки в этой системе.

Показано на примере расчета конкретной системы передачи дискретных сообщений с РОС-ОЖ, что существующая методика расчета может быть использована и для систем, построенных на основе динамического хаоса.

Апробация работы. Основные результаты диссертационной работы докладывались на

1. Международной научно-технической конференции «Информатика и проблемы телекоммуникаций» (Новосибирск, 1997 г.).

2. III Международной конференции «Современные информационные технологии – СИТ 98» (Новосибирск, 1998 г.).

3. Международной научно-практической конференции СВЯЗЬПРОМЭКСПО – 2009. (Екатеринбург, 17-19 марта 2009 г.).

Публикации. По теме диссертации опубликовано 7 работ, и получено три патента.

Структура и объем диссертационной работы. Диссертация состоит из введения,

пяти глав, заключения, списка литературы, четырех приложений и содержит 165 страниц, в том числе 54 рисунка. В списке литературы 82 наименования.

Основные результаты, выносимые на защиту:

1. Способ управления типом колебаний в физической модели аналогового генератора детерминированных хаотических колебаний, в котором для получения хаоса используется туннельный диод.

2. Способ получения хаотических колебаний и управления ими в физической модели аналогового генератора детерминированного хаоса, работа которого основана на электронном моделировании нелинейного преобразования, известного в теории хаоса, как логистическое отображение.

3. Принцип схемотехнического построения и аппаратной реализации физической модели цифро-аналогового генератора хаоса, основанного на моделировании хаотического алгоритма под названием «сдвиг Бернулли».

4. Принцип построения и структурная схема асинхронной системы передачи дискретных сообщений на основе аналоговых генераторов хаоса.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность выбранной темы, приводится краткий обзор истории вопроса применения хаоса в системах передачи информации, рассматриваются некоторые особенности детерминированных хаотических колебаний, использование которых даст возможность получить новые результаты в системах связи; формулируются цели и задачи исследования.

В первой главе приводится обзор существующих принципов построения наиболее известных систем передачи, в которых используются хаотические колебания в качестве носителя информации, а также анализируются принципы построения аналоговых генераторов хаотических колебаний и формулируются требования к ним с точки зрения их использования в рассмотренных системах передачи информации. Предварительно коротко излагается история вопроса о хаосе в электронных системах. Для каждой из рассмотренных систем связи с применением хаоса приведен краткий анализ принципов использования хаотических колебаний в качестве носителя информации, роль и место генератора хаоса в системе и основные требования к его параметрам. Сформулированы общие требования к генераторам хаотических колебаний, пригодных для использования в рассмотренных системах передачи информации. Проведен анализ принципов построения аналоговых генераторов хаоса. Показано, что одним из условий практического использования хаотических колебаний является возможность управления хаосом в физических моделях генераторов. Рассмотрены методы реализации управления хаосом в генераторах. Основные методы управления хаосом в генераторах связаны с изменением параметров или режимов имеющейся в схеме нелинейности, которая и дает возможность получения хаотического режима. Выделено три метода управления хаосом в аналоговых генераторах:

- изменение режима работы элементов схемы;

- изменение параметров элементов или узлов схемы;

- изменение нелинейной характеристики узла схемы, выступающего в роли нелинейного элемента (например эквивалента туннельного диода с регулируемой характеристикой).

Во второй главе приводится описание физической модели аналогового генератора детерминированного хаоса, получение хаотического режима в котором обусловлено применением нелинейного элемента с отрицательным динамическим сопротивлением, в качестве которого используется туннельный диод. Рассмотрены два варианта управления режимами работы этого генератора: изменение рабочей точки туннельного диода или изменение величины положительной обратной связи генератора. Этот генератор хаотических колебаний разработан с использованием принципа, положенного в основу известного в технической литературе генератора КПР (названного так по фамилиям авторов: Кияшко, Пиковский, Рабинович). Генератор КПР был выполнен на лампе и не имел регулировки режимов. Предлагаемый генератор может рассматриваться как усовершенствованный транзисторный вариант генератора КПР, в котором предусмотрена возможность регулировки режимов работы за счет изменения глубины положительной обратной связи или за счет изменения коллекторного тока. Эти варианты соответствуют рассмотренным в первой главе методам регулировки за счет изменения режима работы элемента схемы (туннельного диода) и за счет параметров узлов схемы (цепи обратной связи). Туннельный диод включен таким образом, что через него проходит постоянная составляющая коллекторного тока. Вольтамперная характеристика туннельного диода относится к нелинейности N-типа. Изменение коллекторного тока изменяет положение рабочей точки на характеристике туннельного диода, что дает возможность получать разные типы колебаний: гармонические, нелинейные, хаотические. Упрощенная схема генератора приведена на рисунке 1. Эта схема позволяет получить все типы колебаний, характерных для этого генератора. Регулировка рабочей точки туннельного диода для этой упрощенной модели осуществляется изменением коллекторного напряжения от 1 до 2 вольт.

Коммуникации и связь      Постоянная ссылка | Все категории
Мы в соцсетях:




Архивы pandia.ru
Алфавит: АБВГДЕЗИКЛМНОПРСТУФЦЧШЭ Я

Новости и разделы


Авто
История · Термины
Бытовая техника
Климатическая · Кухонная
Бизнес и финансы
Инвестиции · Недвижимость
Все для дома и дачи
Дача, сад, огород · Интерьер · Кулинария
Дети
Беременность · Прочие материалы
Животные и растения
Компьютеры
Интернет · IP-телефония · Webmasters
Красота и здоровье
Народные рецепты
Новости и события
Общество · Политика · Финансы
Образование и науки
Право · Математика · Экономика
Техника и технологии
Авиация · Военное дело · Металлургия
Производство и промышленность
Cвязь · Машиностроение · Транспорт
Страны мира
Азия · Америка · Африка · Европа
Религия и духовные практики
Секты · Сонники
Словари и справочники
Бизнес · БСЕ · Этимологические · Языковые
Строительство и ремонт
Материалы · Ремонт · Сантехника